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ABSTRACT 
 

 Visions of future warfighting, such as Joint Vision 2020, emphasize using new 

technologies to obtain and exploit information advantages to achieve new levels of 

effectiveness in joint warfighting.  Unfortunately, our warfighting models are notoriously 

poor at capturing the effects of information on battle outcomes.  Moreover, traditional 

measures of effectiveness (MOEs) usually ignore the effects of information and decision 

making on battle outcomes.  The Department of the Navy and other DoD organizations 

have tasked RAND to create a framework for developing measures and metrics to assess 

the impact of C4ISR systems and procedures on battle outcomes.  In order to quantify the 

effects of information and decision making on battle outcomes, RAND built a 

deterministic model and hypothesized a scenario involving the search for, and destruction 

of, a time-critical target (TCT).  This thesis extends their work by making the simulation 

stochastic and exploring practical issues such as: (i) the effects of improved C4ISR 

systems and procedures on battle outcomes; (ii) which messaging and data processing 

delay reductions give the greatest improvements in kill probability; (iii) which command 

and control architecture provides the highest kill probability. 
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THESIS DISCLAIMER 
 

 The reader is cautioned that computer programs developed in this research may 

not have been exercised for all cases of interest.  While every effort has been made, 

within the time available, to ensure that the programs are free of computational and logic 

errors, they cannot be considered validated.  Any application of these programs without 

additional verification is at the risk of the user. 
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EXECUTIVE SUMMARY 
 

Visions of future warfighting, such as Joint Vision 2020, emphasize using new 

technologies to obtain and exploit information advantages to achieve new levels of 

effectiveness in joint warfighting.  Unfortunately, our warfighting models are notoriously 

poor at capturing the effects of information on battle outcomes.  Moreover, traditional 

measures of effectiveness (MOEs) usually ignore the effects of information and decision 

making on battle outcomes.  To address this shortcoming, the Department of the Navy 

and other DoD organizations have tasked RAND to create a framework for developing 

measures and metrics to assess the impact of Command, Control, Communication, 

Computer, Intelligence, Surveillance and Reconnaissance (C4ISR) systems and 

procedures on battle outcomes.   

In order to quantify the effects of information and decision making on battle 

outcomes, RAND hypothesized a conflict scenario and built a deterministic model based 

on it.  The conflict scenario involves a small island country facing a large hostile 

neighboring country determined to annex the island.  A vignette developed by RAND, 

based on the conflict, is selected for examination: An operation consisting of a search for 

and the destruction of a time-critical target (TCT), specifically an enemy KILO 

submarine.  A TCT is a target with a limited window of vulnerability or engagement 

opportunity, during which it must be found, identified, targeted, and engaged.  The 

measure of performance (MOP) for RAND’s TCT vignette is the effective time 

remaining to conduct the search and detection mission of the KILO submarine, and the 

measure of effectiveness (MOE) is the kill probability (Pk) of the KILO submarine. 

Three alternative operating procedures are developed to analyze the TCT vignette.  

They are, in the order of increasing network connectivity, better C4ISR and weapon 

systems, (i) Platform-Centric Warfare (PCW), (ii) Network-Centric Warfare (NCW), and 

(iii) Future Network-Centric Warfare (FCW) operations. 

This thesis extends RAND’s work by developing a stochastic simulation model 

for the TCT vignette, benchmarking it against the existing deterministic model, and 

utilizing it to explore practical issues such as: (i) the effects of improved C4ISR systems 
 xxi



and procedures on battle outcomes, specifically Pk in the TCT vignette; (ii) which 

messaging and data processing delay reductions give the greatest improvements in Pk; 

(iii) which command and control architecture provides the highest Pk. 

A. BENCHMARKING 

Six sets of inputs are supplied to both the deterministic and stochastic model, and 

the results are compared.  The developed stochastic simulation model generally produces 

consistent results with the deterministic model, i.e., low Pk (MOE) in the stochastic 

model goes with low Pk in the deterministic model, and vice versa.  Having said that, the 

mean of the stochastic outputs should not be expected to match up exactly to the 

deterministic output—this is a consequence of the nonlinear transfer function from 

RAND’s framework of measures and metrics. 

For any set of search and detection parameters, Pk rises rapidly from zero to close 

to one within a small range of effective time remaining (0 hour to some “threshold” 

value).  When the mean effective time remaining is significantly higher than the 

“threshold” value, both the deterministic and stochastic models produce consistently high 

Pks.  The deterministic and stochastic Pks start to deviate when the mean effective time 

remaining drops near, or even below the “threshold”.  In general, deterministic and 

stochastic models produce the same results only when the results are clear. 

 xxii



B. NETWORK CENTRICITY COMPARISON 

A key objective of this thesis is to assess the effects of improved C4ISR systems 

and procedures on battle outcomes.  What this translates to in the TCT vignette case 

study is, based on RAND’s framework of measures and metrics, do Future Network-

Centric systems and procedures produce higher kill probability (Pk) than Platform-

Centric or Network-Centric systems and procedures? 

A variant of Latin Hypercube Sampling (LHS) is used to generate the input sets 

for comparing the three operating procedures.  The stochastic simulation results (Figure 

1) show that Future Network-Centric systems and procedures produce significantly 

higher Pks than the Platform-Centric and Network-Centric cases.  The results confirm the 

potential of RAND’s framework of measures and metrics in modeling the general effects 

of C4ISR systems and procedures on battle outcomes.  What remains to be done is the 

calibration and validation of the framework, i.e., fine-tuning the framework to achieve 

results that are consistent with the real world. 
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Figure 1. Network Comparison in Kill Probability.  The Future Network-Centric 
(FCW) systems and procedures produce significantly higher Pks than the Platform-
Centric (PCW) and Network-Centric (NCW) cases. 
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C. CRITICAL INPUT VARIABLES 

Which messaging and data processing delay reductions give the greatest 

improvements in kill probability (Pk) for RAND’s TCT vignette?  Three data mining 

models are used to determine the variables that have the greatest impact on Pk, and to 

extract any interesting patterns/relationships from the stochastic simulation data.  Data 

mining offers a strategic approach to finding useful relationships in large data sets.  All 

three data mining models arrive at the same conclusion, specifically the critical variables 

in the time-critical target vignette, Future Network-Centric system, are the Strike/UCAV 

latency, initial SSN report latency, DDG latency, and enemy submarine submerge time.  

One of the interesting patterns extracted from the simulation results is shown in Figure 2.  

As stated earlier, Strike/UCAV latency and the initial SSN report latency are critical 

variables that have a great impact on Pk.  However, what is implied in Figure 2 is a 

stronger statement, i.e., if the Strike/UCAV and initial SSN report latencies lie within the 

triangle shown, regardless of the values (within the bounds defined) of the other input 

variables, Pk ≥ 0.8. 

D. POLLING OPTIONS FOR FCW 

How should platforms be assigned to launch the Unmanned Combat Air Vehicle 

(UCAV) in the Future Network-Centric system?  This is essentially a command and 

control question that addresses the way the richly-connected network is utilized to 

support combat operations.  There are three alternative polling options, and each requires 

different times for collaboration and UCAV fly out in the TCT vignette.  Analysis on the 

simulation results shows no significant differences between the three. 

 xxiv



 
Figure 2. Strike/UCAV vs. Initial SSN Report Plot.  As long as the Strike/UCAV 
and initial SSN report latencies lie within the triangle shown, regardless of the values of 
the other input variables, Pk ≥ 0.8. 
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I. INTRODUCTION 

A key element of Joint Vision 2020 is "decision superiority”—translating 

information superiority into better decisions arrived at and implemented faster than an 

enemy can react.  To that end, the National Defense Research Institute (NDRI) at RAND 

has been tasked by the Assistant for Strategic Planning (N6C), Department of the Navy, 

and Office of the Chief of Naval Operations (CNO), to create a framework for 

developing measures and metrics to assess the impact of Command, Control, 

Communication, Computer, Intelligence, Surveillance and Reconnaissance (C4ISR) 

systems and procedures on information superiority; and more importantly, battle 

outcomes.  This is a first attempt to create such a link between C4ISR systems and 

procedures and battle outcomes for the Navy. 

A. BACKGROUND 

The primary objective of RAND’s work is to create a framework for developing 

measures and metrics that adequately assess the impact of improved (or degraded) C4ISR 

systems and procedures on battle outcomes.  In the process, example measures and 

metrics are suggested that purport to achieve this goal.  These are presented with the idea 

of generating dialog in the Naval and C4ISR communities concerning the framework and 

the measures and metrics suggested. 

Although measures are simply bases or standards of comparison, and can 

therefore, be described qualitatively, metrics must be mathematical expressions that allow 

us to evaluate, not only the relative effect of alternative C4ISR systems on battle 

outcomes, but also the degree to which one is better or worse than another.  This argues 

for strict mathematical formulations that produce the expected results.  It is important to 

note however, that the process suggested by RAND is deductive; i.e., none of the 

equations are based on experimental or operational data.  Validation remains an essential 

task for future work. 

Traditional measures of effectiveness (MOEs) usually ignore the effects of 

information and decision-making on battle outcomes (Reference 1).  C4ISR operations 
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have been analyzed separately, and their effects on battle outcomes have usually been 

inferred rather than directly assessed.  For RAND’s study, an important part of their work 

is to create an appropriate naval warfare scenario, whereby the effects of information and 

decision making on battle outcomes can be quantified. 

The conflict scenario hypothesized involves a small island country facing a large 

hostile neighboring country determined to annex the island.  The conflict is set 10 years 

into the future to provide time to implement emerging C4ISR systems and procedures, as 

well as emerging Navy systems.  The fact that the primary attack routes are over water 

implies a significant naval component.  The U.S. role in the conflict is to enhance the 

island’s defensive capabilities against enemy missile attacks by attacking enemy 

launchers and intercepting their missiles in flight.  There is no desire for the U.S. to 

attack the enemy’s territory.  Two carrier battle groups (CVBGs) are dispatched, one to 

the north, and another to the south end of the island.  Cruisers working in pairs are 

assigned to ballistic missile defense duty off the island’s two major ports, and nuclear 

submarines (SSNs) are assigned to attack enemy interdiction submarines.  One of 

RAND’s vignettes based on the conflict scenario is selected for detailed study: An 

operation consisting of a search for and the destruction of a time-critical target (TCT). 

A TCT is a target with a limited window of vulnerability or engagement 

opportunity, during which it must be found, identified, targeted, and engaged.  The focus 

of the TCT analysis is on the development of mathematical relationships that link 

Network-Centric operations, command and control, combat operations, and battle 

outcomes.  The first two focuses on the measure of performance (MOP), effective time 

on target, and the latter two focuses on the MOE, kill probability.  In developing the 

combined metric: 

a. Graph theory is used to assess the network connectivity, i.e., determine the 

number of nodes and connections in the command, control and 

communications network supporting the mission.  More nodes in the TCT 

network may lead to the positive effects of collaboration, or the negative 

effects of complexity.  Collaboration enhances the degree of shared 

awareness in the network, whereas complexity is the result of too much 
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information being made available to the Task Force nodes resulting in 

what is generally referred to as “information overload”. 

b. Information theory is used to quantify the degree of knowledge present 

and how it affects kill probabilities. 

c. Search theory is used to determine the detection probability of the TCT. 

RAND suggests a three-step exploratory data analysis method for evaluating the 

MOP and MOE from the TCT vignette: 

a. Phase 1 – An introductory visual exploration: This allows all inputs to 

occur with equal probability. 

b. Phase 2 – A focused analysis: The objective is to restrict the exploration 

to ranges of input variables that are more likely to occur. 

c. Phase 3 – A full-scale stochastic simulation: The simulation does not 

use the expected values of known distributions, but randomly draws from 

the distributions at each simulation iteration. 

Exploratory data analysis (EDA) is an approach developed by John Tukey (1977).  

EDA takes an open-minded, exploratory attitude towards data, employing graphical 

techniques to find useful relationships and patterns within the data.  EDA differs from 

traditional analysis in the way the model is used.  In exploratory analysis, the model is 

run many times with varying input levels, as opposed to the traditional approach of 

running the best-estimate case followed by sensitivity analysis.   

The RAND EDA tool is implemented in an Excel spreadsheet.  The spreadsheet 

model enables the analyst to generate hundreds of alternatives based on varying operating 

procedures.  Prior to this thesis, RAND’s EDA tool supported only Phases 1 and 2 of the 

EDA process.   

B. OBJECTIVE AND SCOPE 

The purpose of this thesis is to assess the effects of improved C4ISR systems and 

procedures on battle outcomes, using stochastic simulation (Phase 3 of the EDA process).  
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To do this, the RAND EDA tool is extended to include stochastic simulation capabilities, 

and the TCT vignette is used as a case study for the assessment.  

The stochastic simulation model developed is then used to answer three questions 

that RAND and their Navy sponsors are interested in: 

a. Does improved C4ISR systems and procedures produce a quantifiable 

improvement in the battle outcome, i.e., does kill probability increase in 

the TCT vignette? 

b. Which are the critical processing and messaging delay times that impact 

kill probability the most? 

c. How should platforms be assigned to launch the UCAV in the Future 

Network-Centric system? 

With the new stochastic simulation portion of the EDA tool, three important areas 

of concern that could not be addressed previously now can be: 

a. Real-world outcomes—Each input and MOE should belong to a finite set 

of possible real-world outcomes, e.g., we either manage to kill the target 

or we do not.  That is, we do not kill fractional targets as is done in 

deterministic models. 

b. Variability—The current EDA tool uses expected values for the stochastic 

input variables, which produces a single output for the effective time on 

target (MOP) and kill probability (MOE).  The use of expected values for 

the stochastic input variables, instead of their true distribution will often 

generate biased outcomes, which might lead to poor decision-making.   

c. Extreme values analysis—In an analysis, extreme outcomes often provide 

answers to our questions.  For example, what causes a failure?  Are there 

simple but effective ways to push the marginal failure cases into the pass 

region?  This analysis is sometimes impossible using expected values.  
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C. ORGANIZATION OF THESIS 

Chapter I introduces the thesis, it provides the background of the thesis and the 

work done so far by RAND.  The objective and scope of the thesis are clearly indicated in 

the chapter.  In Chapter II, the TCT vignette hypothesized for the analysis is fully 

described.  The basic theories behind the formulas used in the development of 

mathematical relationships that link Network-Centric operations, command and control, 

combat operations, and battle outcomes are provided.  Chapter III focuses on the 

developmental process of the simulation portion of RAND’s EDA tool.  The formulas 

implemented in the Excel spreadsheet are documented and explained.  The simulation 

portion of RAND’s EDA tool is benchmarked against the deterministic portion.  In 

Chapter IV, the EDA results/findings from the stochastic simulation are discussed.  The 

last chapter, Chapter V concludes by highlighting the important findings of the thesis. 
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II. TCT VIGNETTE AND FORMULAS OVERVIEW 

Part of RAND’s study to quantify the effects of information and decision making 

on battle outcomes was to create an appropriate naval warfare scenario.  The description 

of the conflict scenario and the vignette chosen for detailed analysis constitutes the first 

half of this chapter.  The second half of the chapter lays down the theories behind the 

formulas used in developing the mathematical relationships between C4ISR systems and 

procedures, and battle outcomes. Most of the materials presented in this chapter are 

extracted from the RAND study report (Reference 1). 

A. TCT VIGNETTE 

The conflict scenario hypothesized involves a small island country facing a large 

hostile neighboring country determined to annex the island.  A vignette developed by 

RAND, based on the conflict, is selected for examination: An operation consisting of a 

search for, and the destruction of a time-critical target (TCT).  This thesis focuses on the 

TCT vignette, particularly the development of mathematical relationships that link 

Network-Centric operations, command and control, combat operations, and battle 

outcomes.  

A TCT is a target with a limited window of vulnerability or engagement 

opportunity, during which it must be found, identified, targeted, and engaged.  RAND’s 

TCT vignette (Reference 1) starts on day D+6, with a U.S. Virginia class nuclear 

submarine (SSN) beginning a previously planned Intelligence, Surveillance and 

Reconnaissance (ISR) mission off the enemy’s coast.  On D+10, the ISR SSN detects an 

enemy KILO submarine leaving port, and it starts tracking the KILO.  The U.S. plan is to 

kill the KILO on the surface as it emerges from the port without revealing the ISR 

submarine or disrupting its mission.  A surfaced submarine is highly vulnerable.  

Submerging increases the difficulty of detecting, classifying, localizing, and killing it.  

When the SSN report gets through the network, an F/A-18 fighter attack aircraft is 

vectored to the KILO and will try to kill it using a SLAM-ER (Stand-Off Land Attack 

Missile – Extended Response) missile.  
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Three alternative operating procedures are developed to analyze this problem.  

They are, in the order of increasing network connectivity, better C4ISR and weapon 

systems, (i) Platform-Centric Warfare (PCW), (ii) Network-Centric Warfare (NCW), and 

(iii) Future Network-Centric Warfare (FCW) operations.   

In the Platform-Centric case (Figure 3), the ISR SSN will report up the chain of 

command to the Submarine Group (SubGroup) commander, who will then alert the 

CVBGs that a threat submarine has left port.  A previously designated F/A-18 on one of 

the two carriers, CV and nuclear CV (CVN) flies out to attack the KILO from outside of 

the enemy’s surface-to-air missile (SAM) envelope using a SLAM-ER missile.  The ISR 

SSN will continue to provide updates on the KILO’s position, course and speed (PCS).  

Command and control in this Platform-Centric case is split awkwardly between the SSN 

and Air Operations on the carrier, and there is no direct communication between the two.  

NINGBO

XIANGSHAN

SubGroup

CVN

Aircraft

VA class

VA-class SSN sends text message 
to SubGroup via satellite - latency 
driven by security concerns.  SSN 
can detect if aircraft fails to attack –
can attack independently

CV

SubGroup resends 
critical info to CVBGs
after rewriting the 
message

CV and CVN negotiate to 
determine which has the 
ready aircraft

Aircraft flies 
out under control 
of carrier

SSN attempts to 
provide updates to aircraft 
through SubGroup, by 
way of controlling carrier

Carrier read, processing and 
alert flight operations -- Flight 
Operations directs aircraft launch

 

KILO

2.

3.

1.

5.

6.

4.

Figure 3. Platform-Centric Operations.  The key disadvantage with the Platform-
Centric case is the long messaging delays between the ISR submarine and the F/A-18. 

In the Network-Centric case (Figure 4), the connectivity among the participants is 

richer.  The ISR SSN has two-way communications to the carriers and the deploying 

aircraft.  This removes the delay time for the SubGroup to relay messages.  The F/A-18 

receives periodic target updates directly from the ISR submarine.  The command and 
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control architecture has the same division as the Platform-Centric case, i.e., the F/A-18 is 

still under the command and control of the CVBG, and the ISR SSN still reports to the 

SubGroup commander, however, with the direct communication link between the ISR 

SSN and the F/A-18, the messaging delay time can be reduced.  

NINGBO

XIANGSHAN

SubGroup

CVN

Aircraft

VA class

VA-class SSN sends text message to 
SubGroup and CVBGs - latency driven 
by security concerns. SSN can attack if 
aircraft fails to attack – can attack 
independently

CV

Aircraft flies out 
under control of 
carrier - can abort

SSN provides updates 
directly to aircraft via Link 
16 at intervals driven by 
security concerns  

CV and CVN negotiate to 
determine which has the 
alert aircraft

Carrier read, processing and 
alert flight operations -- Flight 
Operations directs aircraft launch

 

KILO

2.

4.

5.

1.

3.

Figure 4. Network-Centric Operations.  With a direct communication link between 
the ISR SSN and the F/A-18, the messaging delay time can be reduced. 

In the Future Network-Centric case (Figure 5), an Unmanned Combat Air Vehicle 

(UCAV) replaces the F/A-18.  UCAVs are designed to be launched from a variety of 

surface combatants.  When the ISR submarine detects the KILO, it alerts all potential 

UCAV launch ships.  Command and control procedural questions that need to be 

addressed include: Who determines which combatants are candidates to launch the 

UCAVs?  Who makes the final selection of which ship to launch the UCAV, etc? The 

ships receiving the message negotiate to determine which can get a UCAV to the KILO 

first.  A UCAV is then launched and begins its flyout to the KILO area of uncertainty 

(AOU).  The ISR submarine takes over control of the UCAV, including weapon release.   
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Figure 5. Future Network-Centric Operations.  Unmanned Combat Air Vehicle 
(UCAV) replaces the F/A-18. 

B. FORMULAS OVERVIEW  

The measure of performance (MOP) is the expected amount of time the F/A-18 or 

UCAV will have to detect, acquire and destroy the target.  The measure of effectiveness 

(MOE) is the probability that the weapon will kill the target given the amount of time to 

search and acquire it.  The derivation of the formulas used to determine the MOP and 

MOE constitutes the rest of this chapter.   

1. Graph Theory 

We begin by describing the command, control and communications network 

supporting the operation as an abstraction of an undirected graph.  Consider a notional 

network that consists of n nodes, with m connections.1  Of the n nodes in the network, 

however, only  are involved in the current operation.  For example, Figure 6 illustrates 

a network with 10 nodes but only 13 connections.  The shaded nodes represent those 

τ

                                                 
1 By connection we mean that the “connected” nodes are able to communicate to each other directly.  

This does not necessarily mean that there is a physical connection between the two, only that a 
communication channel exists.  Whether it is a direct link or a relayed link is immaterial. 
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involved in the operation.  This is typically the structure of operational networks.  Not all 

potential operational elements are connected and not all are involved in the current 

operation.  Some interesting relationships arise from this topology however.   

1

10

2

4

6

9

3

5
8

7

Participant in current operation

 
Figure 6. Notional Operating Network.  The maximum number of connections in 

the network is  = 45. 







2

10

First, we note that the maximum number of connections in a network with n 

nodes is: 

( )
2

1
2

−=






 nnn
       (1) 

Thus ( )
2

1−≤ nnm .  In Figure 6, we have a maximum of 45 possible connections.  

If all were connected, the graph representing the network would be complete.   

Secondly, it is important to analyze the role of connected facilities not directly 

involved in the operation.  For example, nodes 6 and 10 are connected to node 9.  If node 

9 were the Commander of the U.S. Joint Task Force (CJTF) controlling the operation, 

then 6 and 10 might be information sources (fusion centers on board or remotely located, 
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national intelligence centers, etc.) available to the CJTF.  These connections allow the 

participants to collaborate in arriving at a decision.  Collaboration in this case may 

improve the quality (accuracy, timeliness, and completeness) of the decision and is 

therefore, an attribute of the command, control and communications process that needs to 

be factored into the overall metric.  On the other hand, there is always a possibility that 

too much information is made available to the Task Force nodes resulting in what is 

generally referred to as “information overload”.  This is the complexity effect and it has 

the opposite effect of collaboration. 

2. A Probability Model of Knowledge 

The uncertainties addressed in this thesis in the TCT problem center on the time 

required getting ordnance on target.  The intermediate times used to collect, process, and 

disseminate information, all of which are also uncertain, contribute to this time.  Because 

they are uncertain, all are considered to be random variables.  The most common 

distribution assumed for the intermediate times is the exponential2 distribution.  Let’s 

consider the time, t, required to complete one of the tasks in the TCT problem, where t is 

an exponential random variable with density function: 

( ) 0for  : ≥λ=λ λ− tetf t     (2) 

The expected time required to complete the task is 1 .  The uncertainty in this 

and the other times comprising the overall TCT problem can be taken to reflect a lack of 

knowledge.  Knowing exactly how long each task takes facilitates planning and 

execution, a lack of knowledge can result in poor planning and possibly, mission failure.   

λ/

3. Information Entropy 

To assess the degree of knowledge present in the density functions used in the 

TCT problem, we employ the concept of information or Shannon entropy.  Information 

entropy is a measure of the average amount of information in a probability distribution 

and is defined as: 

                                                 
2The only other distribution assumed for the intermediate times is the gamma distribution, for the 

initial SSN report delay.  Only the exponential distribution is discussed in this section.  The same formulas 
apply to the gamma case, with details provided in the simulation development chapter. 
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Information entropy is the negative expected value of the logarithm of the 

probability density function.  Information entropy is based on the notion that the amount 

of information in the occurrence of an event is inversely proportional to the likelihood 

that the event will occur.   

Applying the formula to the exponential distribution, we get: 
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e
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lnln1

1ln)(lnlnln
 (4) 

Note that entropy varies with the variance of the distribution, as should be 

expected.  As the variance 1  increases,  also increases.  Note that entropy is 

unbounded for this distribution.3   

2/ λ ( )tH

RAND uses the entropy function to develop a measure of knowledge by first 

assessing the “certainty” in the density function.  This requires an approximate upper 

bound be assigned to , the equivalent to assigning a maximum expected time to 

complete a given task.  This should not be too difficult to do for most tasks associated 

with the TCT problem.  If we let 

( )tH

minλ  represents the minimum rate that corresponds to 

the maximum expected time, then a measure of certainty or knowledge can be written as: 

( ) 







λ

λ=







λ
−








λ

=
minmin

lnlnln eetK     (5) 

Note that this quantity is dimensionless and therefore, can be used directly to 

influence combat measures of effectiveness.  It is desirable however, for the measure of 

knowledge to be normalized.  This can be accomplished by noting that when minλ=λ , 

 and when ( ) ( ) 01ln ==tK ( ) ( ) 1ln ,/ min ===λ etKeλ .  Using this logic, RAND uses 

the following definition for knowledge: 

                                                 
3 This is true for all continuous distributions. 
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One problem with this formulation is the condition for “perfect” knowledge.  This 

occurs when , or when the expected time to complete a task, 1 , is 

approximately one-third the maximum expected time to complete the task.  Figure 7 

illustrates the knowledge function for 

( ) 1=tK λ/

5.0min =λ  completions per hour or a maximum 

time of 2 hours to complete a task.4  
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Figure 7. Knowledge Function for Exponential Distribution.  minλ  represents the 
minimum rate that corresponds to the maximum expected time to complete a task. 

It may be desirable in some cases to employ more stringent conditions on 

“perfect” knowledge.  This can be done by casting the probability distribution in terms of 

: eM >

( ) ( )










≥

<≤=
−

<

=

           if                                         1

 if 
ln 

/ln
ln

lnln
              if                                        0

min

minmin
minmin

min

λλ
λλλλλλλ

λλ

M

M
MM

tK   (7) 

                                                 
4 For additional information on the use of information entropy as a measure of knowledge, see W. 

Perry and J. Moffat, “Measuring the Effects of Knowledge in Military Campaigns”, in “The Journal of the 
Operational Research Society”, (1997) 48, No. 10, pp 965-972. 

14 



4. Latencies 

For each of the three cases (Platform-Centric, Network-Centric, and Future 

Network-Centric) studied, the time required to perform the required tasks is central to 

computing the latency MOP necessary to evaluate the effectiveness of the TCT 

operations.  Table 1 lists the expected (mean) times/latencies required, as assessed by 

Navy personnel (see RAND’s report, Reference 1), to complete the tasks listed along 

with a reasonable upper bound (the lower bound is, of course, zero).   

Platform-Centric Network-Centric Future Network- 
Centric Tasks 

Mean Maximum Mean Maximum Mean Maximum 
ISR SSN alert 15 60 15 60 15 60 

SubGroup processing 20 45 20 45 20 45 
CV reads, processes, 
alerts flight operations 10 20 5 10 - - 

CV directs aircraft 2 5 - - - - 
Select launch 
platform - - - - 2 5 

Aircraft preparation 
and launch 

5 10 5 10 - - 

UCAV launch - - - - 5 10 
UCAV fly out - - - - 5 10 
F/A-18 fly out 15 30 15 30 - - 
SLAM-ER fly out 15 20 15 20 15 20 
SSN update 15 60 15 60 - - 

All times in minutes 
Table 1. Expected and Maximum Latencies for the Three Networks. 

Although not the complete story, the time required to get a weapon on target is an 

important part of the time-on-target metric.  In general, there are  nodes involved in 

the operation.  We will refer to these nodes as the Task Force.  Not all nodes need to be 

combat elements; some may be sensors, information processing facilities, etc.  The only 

criterion is that they be directly involved in the mission.  The time required for each to 

perform its assigned tasks contributes directly to latency.  Note that we are not concerned 

about “how well” they perform their task at this point, just how long it takes.  It is also 

n≤τ
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possible that the elements of the Task Force perform their tasks in parallel, sequentially 

or some combination of both.   

For node i, the time, t, required to perform all of its tasks in support of the 

operation is taken to be an exponential random variable: 

( ) t
ii ietf λ−λ=λ:      (8) 

where: 

iλ
1  is the mean time to complete all tasks at node i.  Assuming that all nodes act 

sequentially, we then get a total expected latency of, 

∑τ
= λ

= 1
1

i
i

L       (9) 

Other operating concepts are possible.  For example, Figure 8 depicts two 

different concepts, both of which have sequential and parallel processing components.  

The expected latency for the first concept is: 
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Note that only the path nodes are assessed, not the transit time between the nodes.  

The reason is that we are assessing the delay at the nodes only: the communication time 

between nodes is taken to be practically instantaneous. 

In either case, the critical path times constitute the expected latency.  If we let 

 represent the nodes on the critical path, the expected latency then is: τ≤ρ

∑ρ
= λ

= 1
1

i
i

L       (11) 
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Figure 8. Alternative Operating Concepts.  Only the latencies of those nodes on the 
critical path constitute the expected latency. 

5. Quality 

In RAND’s example, there are several ways the quality of the information 

regarding the location of the enemy submarine may be influenced by the command, 

control and communications system.  First, the equipment and procedures in place at each 

of the nodes that contribute to the operation affect the accuracy of the intermediate 

products produced at that node.  For example, the fusion facilities on board the cueing 

system determine, in part, how well the enemy submarine is tracked.  Secondly, the 

degree to which the Task Force is able to collaborate to inform decisions increases the 

confidence that a correct (accurate) decision is taken.  Thirdly, the ability of the Task 

Force to access other nodes in the network to complete the operational picture helps 

ensure nothing is missed.  Finally, the amount of training and level of experience of the 

crews and the length of time they have operated as a team affects the speed with which 

they are able to accomplish their assigned task—to locate and engage the enemy 

submarine. 
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A suitable measure of quality in the TCT problem is therefore, the amount of 

knowledge available about the expected times required to complete the tasks.  The quality 

of the processes and equipment in place at each node, i, in the Task Force is calculated as 

the knowledge function, and therefore, RAND uses a metric, .  A value of 

 close to 1.0 implies high quality whereas one nearer to zero implies low quality.  

In addition to the nodes in the Task Force, RAND assumes that the quality of the 

products produced by other nodes in the network can also be measured in the same way.   

( ) 10 ≤≤ tKi

( )tK i

6. Collaboration 

Collaboration is a process in which a team of individuals work together to achieve 

a common goal.  It is important because collaboration enhances the degree of shared 

awareness in the group focused on solving a specific problem or arriving at an agreed 

decision.  There are several reasons why collaboration might be expected to improve the 

degree of shared awareness, including the potential for increased sharing of information 

and experience, as well as synergy of inference.  However, there are other factors that can 

degrade performance, such as disruptive interactions, misunderstandings or over-valuing 

a particular point of view due to the persuasiveness or authoritarian role of an individual 

team member.  For this reason, the opportunity to collaborate can both add to and detract 

from effective combat operations.  This section treats the contributions only.  The 

detractions5 are addressed later 

We now assess the contribution of collaboration to the task of locating and 

engaging the enemy submarine.  But first, we need the definition of the degree of a node 

(or vertex) from graph theory: 

Degree:  The degree of a node or vertex in an undirected graph is the number of 

edges emanating from it, with loops counted twice.6   

The network graphs in Figure 6 and Figure 8 are undirected graphs in that the 

hat node 6 in Figure 6, for example, has degree 5. connection is two-way.  Note t                                                 
5 For a fuller discussion of collaboration and shared awareness, see W. Perry, D. Signori and J. Boon, 

“Exploring Information Superiority: A Methodology for Measuring the Quality of Information and its 
Impact on Shared Awareness”, RAND DRR-2389-OSD, 2001. 

6 Taken from B. Jackson and D. Thoro, “Applied Combinatorics with Problem Solving”, Addison-
Wesley, 1990. 
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The opportunity for collaboration depends upon the number of Task Force and 

other nodes each Task Force node is connected to, or the degree of the node.  Letting  

be the degree of node i, then the contribution of collaboration to the quality of node i’s 

operation is expressed by RAND, as the product: 

in

( )( jin
j j tK

ω
=∏ −1 1 )

]

     (12) 

where: 





=ω
        ForceTask  in the is  node if 0.1

ForceTask  in thenot  is  node if  5.0
j
j

j  

If the quality of the interaction between nodes i and j is “good”, i.e.,  is 

close to 1, then 1  will be small—thus reducing the overall product.  RAND uses 

this effect to define the expected latency accounting for collaboration as: 

( )tK j

( )tK j−

( ) ( )( )[∑ ∏τ
= =

ω
λ

−= 1 1
11i
i

n
j ji jtKcL     (13) 

The effect of collaboration is to reduce the expected time required to complete the 

mission and “good” collaboration reduces it further.   

7. Complexity 

A well-connected network is necessary for effective command and control, but it 

is not sufficient.  For this reason, RAND refers to the network as the potential energy in a 

command and control system.  The sufficient condition that must be added is the 

command and control process that operates over the network.  This is the kinetic energy 

of the command and control system and to be effective, it must produce quality 

information that is reflected in good combat outcomes; it is always possible to misuse a 

well-connected network and to effectively use one that is not well connected. 

In a well-connected network there is always the possibility that too much 

information is made available to the Task Force nodes resulting in what is generally 

referred to as “information overload.”  This can have the opposite effect of collaboration.  

Instead of speeding the time required to complete tasks, it can slow the time as staff and 
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commanders sift through the information for what is required.  RAND refers to this effect 

as complexity, and asserts that every command and control system exhibit this effect to 

some degree.   

Complexity is defined by RAND as a function of the total number of connections 

to the Task Force nodes, or the total degree of the operation.  Therefore, complexity 

focuses on the potential misuse of the network, whereas collaboration focuses on the 

effective use of the network.  Letting C represent operational complexity, then  

∑ρ
== 1i inC       (14) 

For small values of C, the complexity effect is negligible and for some range it 

increases rapidly, leveling off at what might be referred to as the information overload 

point, i.e., when the information arriving from the multiple connections is so great as to 

practically shut down operations.  This suggests a logistic or S-curve relation between C 

and the complexity factor to be introduced into the expected latency metric or7: 

( )
bCa

bCa

e
eCg

+

+

+
=

1
     (15) 

The parameters a and b determine both the region of minimal impact and the size 

of the region of rapidly increasing impact.  Figure 9 illustrates a typical complexity 

function for the zero to 45 possible connections for the network depicted in Figure 6. 

                                                 
7 This curve is sometimes referred to as the logistics response function or the growth curve.  See J. 

Neter and W. Wasserman, “Applied Linear Statistical Models”, R.D. Irwin, 1974. 
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Figure 9. Complexity Factor.  The parameters a (-7) and b (0.3) determine both the 
region of minimal impact and the size of the region of rapidly increasing impact. 

Including complexity in the calculation of the expected latency, yields: 

( ) ( ) ( )( )[ ]∑ ∏τ
= =

ω
λ

−
−

= 1 1
11

1
1, i

i

n
j ji jtK

Cg
CcL    (16) 

When the number of connections is low, the complexity effect on latency is 

minimal.  Between approximately 15 and 35 connections, the complexity effect rises 

sharply, leveling off to nearly paralysis at 45 connections. 

Equation (16) reflects the balance between the positive effects of collaboration 

and the negative effects of complexity.  If the effects of complexity are negligible, i.e., 

there are few connections in the network, and the effects of collaboration are 

considerable, i.e., the knowledge function for most distributions is high, then it is possible 

for the expected latency to be much lower than the sum of the critical path latencies.  

What this means is that the positive effects of collaboration have compensated for the 

time required to perform all operational tasks.  The converse is also true in a richly 

connected network where the knowledge functions are rather small.  That is, the effective 
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latency can exceed the critical path latency.  For this reason,  is called the 

“effective expected latency”. 

( CcL , )

)

                                                

8. Detection and Target Acquisition 

The measure of TCT effectiveness is the probability that the target can be 

attacked during the window of opportunity.  For the case of the surfaced threat 

submarine, it is the probability that the aircraft can detect, classify, and place ordnance on 

the submarine before it submerges.  This probability of detection depends upon time on 

target, the quality (accuracy, timeliness and frequency) of the location and speed 

estimates of the enemy submarine, and the characteristics of the attack weapon.  For the 

purpose of illustration, it is assumed that the aircraft will attack using a missile with an 

electro-optical system capable of detecting and classifying the threat submarine on the 

surface.  The aircraft is not expected to detect the submarine directly.  Instead, the pilot 

uses the cockpit display from the missile to detect and classify the target.  The pilot then 

locks the missile onto the target submarine.  For simplicity, the aircraft is assumed as 

searching the KILO area of uncertainty (AOU), with the missile employed as a remote 

sensor.  RAND also assumes a sea-skimming missile with an accordingly short 

acquisition range, and that once the missile has acquired the submarine it will be killed 

quickly.  In other words, the time of flight over the acquisition range and weapon 

reliability is not considered. 

If S is the time that elapsed between the moment the submarine leaves port and 

submerges (in hours), then T .  If T , the aircraft fails to engage the 

target.  If T , the cumulative probability that the aircraft detects and acquires8 the 

target depends upon the length of time it has to search the AOU.   

( CcLS ,−= 0≤

0>

 
8 For purposes of this analysis, we are concerned with both detection and acquisition.  However, for 

ease of exposition, we refer to both as simply “detection”. 
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Letting s denote the sweep width in nautical miles, v denote missile speed in 

knots, and A the AOU in square nautical miles, the probability of detection 9 as a 

function of search time T is: 

( )TPd

( ) T
d eTP γ−−= 1      (17) 

where: 

A
sv=γ  

Field of regard

Acquisition 
range

Sweep Width s

Missile

Area of Uncertainty, A

 
Figure 10. Search Operations.  The actual shape of the area of uncertainty (AOU) 
depends upon what the friendly force knows about the enemy submarine’s mission. 

As depicted in Figure 10, A is taken to be the area of a circular region. However, 

the actual shape of the region depends upon what the friendly force knows about the 

enemy submarine’s mission.  The effect of knowledge is to reduce the size of the AOU 

by restricting the search to a fraction of the circle coincident with the direction of the 

submarine, which has the same effect as reducing the radius of search. 

                                                 
9 See B. Koopman, “Search and Screening: General Principles with Historical Applications”, 

Pergamon Press, Inc., 1980. 
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The radius of the AOU depends upon the elapsed time, t , since the last update 

and upon the speed of the surfaced submarine; 

u

2







π=

π=

k
wt

A u
2




k
r , where                 

0 < 2

1
k

 ≤ 1 is the fraction of the circle that must be searched based on the prior 

knowledge of the submarine’s route of advance.  For simplicity, AOU growth is not 

considered during the search.  Similarly, the possibility of updating target data during the 

search is not addressed.  Now, the cumulative detection probability function becomes: 

( ) ( )
T

wt

svk

d ueTP
2

2

1 π
−

−=     (18) 

Although the friendly commander has no control over target speed w, improved 

equipment and procedures can greatly affect s, v, T, and intelligence information can 

affect k.   

Figure 11 illustrates the increase in detection probability for two cases: (i) when 

the AOU is 20 square nautical miles and (ii) when the AOU is only 1 square nautical 

mile.  In both cases, the speed of the missile is 450 knots and the sweep width is 0.25 

nautical miles.  If we assume that the speed of the target submarine is constant (or in any 

case not under the friendly commander’s control), and then the radius of the AOU is 

dependent on solely the time elapsed since the last update on the target submarine’s 

location.  Note the dramatic difference in the results.  For the 1 square nautical mile case, 

detection probability “approaches one” within two or three minutes of searching whereas 

the detection probability for the 20 square nautical mile case has still not peaked after 30 

minutes of searching. 
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Figure 11. AOU Effects on Detection Probability.  Note the dramatic difference in 
the results.  For the 1 square nautical mile case, detection probability “approaches one” 
within two or three minutes of searching, whereas the detection probability for the 20 
square nautical mile case has still not peaked after 30 minutes of searching. 

The probability, , is the probability that the target will be detected by time 

T.  This is the cumulative probability distribution for the probability density function: 

( )TPd

( ) T
d eTf γ−γ=     (19) 

This function has a mean 
( )

2

21
svk

wtuπ
=

γ

( )Tf d

.  This is the expected time required to 

detect the target.  As with the times required to collect, process, and disseminate 

information, a maximum expected time can be determined and therefore, the knowledge 

resident in the detection time density  is assessed by RAND to be: 

( ) ( )








γ≥γ
γ<γ≤γγγ

γ<γ
=

           if                1
 if /ln

              if                0

min

minminmin

min

e
eTK    (20) 

This can be used to reflect the quality of the target location estimate, and it will 

influence the probability of detection.  
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In general, if K(T) is large, i.e., the uncertainty of the search time is small, we 

would expect a search more effectively matched to the time available, which has the 

effect of reducing the search area. The effective search area EA is:  

[ ]
2

 )(1 





−=

k
wt

TKE u
A π      (21) 

Applying this to the detection probability equation, the adjusted detection 

probability is: 

( ) [ ] ( )
T

wtTK

svk

d ueTP
2

2

)(1* 1 π−
−

−=     (22) 

If we let  be the knowledge-enhanced probability of kill, then in the case 

where detection is equivalent to a kill with probability one, . 

*
|TKP

( )TPP dTK
**

| =
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III. SIMULATION DEVELOPMENT AND BENCHMARKING  

The first section of this chapter documents the developmental steps to implement 

the stochastic simulation model.  In the second section, the conclusions from the 

benchmarking exercise of the stochastic simulation model against the existing 

deterministic model are discussed. 

A. SIMULATION DEVELOPMENT 

The RAND EDA tool, which was a purely deterministic model, is extended to 

include stochastic simulation capabilities, with the TCT vignette used as a case study.  

The stochastic simulation tackles three issues that could not be addressed using a 

deterministic model: real-world outcomes, variability, and extreme values analysis. 

The main developmental steps in implementing the simulation model are: 

a. Determine the appropriate distributions to represent the various latencies 

and the search and detection variables, e.g., sweep width of the SLAM-ER 

missile depends on factors like the weather conditions.  Thus, sweep width 

has a certain minimum and maximum value, and a value for a “typical 

weather” day.  The beta distribution with parameters minimum, maximum 

and mode are used to fit the sweep width variable. 

b. Design and develop a data entry form to elicit parameters of the various 

latencies and search and detection distributions.  Data validation checks 

are incorporated in the data entry form to make it user-friendly, i.e., the 

simulation model automatically checks that the data that the user has 

entered are logical, e.g., minimum ≤ average. 

c. Implement a process for utilizing the stochastic simulation to analyze the 

TCT vignette.  Adopting the framework of measures and metrics created 

by RAND, compute the effective time remaining (MOP) and kill 

probability (MOE) for each simulation replication.  The simulation is 

repeated for a user-specified number of times, and the user-specified 
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confidence intervals of the MOP and MOE are calculated from the 

simulation results, and the MOP and MOE histograms are drawn. 

The details of the simulation development are documented in Appendix A. 

B. BENCHMARKING AGAINST DETERMINISTIC MODEL 

In this section, the stochastic simulation model developed is benchmarked against 

the deterministic model.  Six pairs (stochastic vs. deterministic) of results are compared 

to provide some assurance that the stochastic model produces logical and consistent 

results with the deterministic model: 

a. Pair 1: Network centricity is set to Future Network-Centric.  All inputs are 

deterministically set to their average values. 

b. Pair 2: Network centricity is set to Network-Centric.  All inputs are 

deterministically set to their average values. 

c. Pair 3: Network centricity is set to Platform-Centric.  All inputs are 

deterministically set to their average values.  The first three pairs (second 

pair uses the same inputs as the first pair except the network centricity is 

changed to Network-Centric, and the third pair is for Platform-Centric) of 

results are based on the same inputs so that the performance of each 

network centricity can be gauged. 

d. Pair 4-Pair 6: Network centricity and inputs are set randomly, in an effort 

to add credibility to the benchmarking exercise. 

1. Pair 1 Comparison (FCW) 

The deterministic inputs for the first pair of results: 

a. Future Network-Centric (same as the Futuristic Network in Figure 10). 

b. All input parameters to the deterministic model are set at their average 

values, i.e., the mid slider bar positions (see Figure 12), except for 

submerge time and UCAV.  These two inputs are set at values that ensure 
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non-zero outputs (to make sure useful insights can be gained from the 

comparisons). 

 
Figure 12. RAND EDA Tool for TCT Vignette.  The left portion of the screen shows 
the input variables, and the right portion shows the effective time remaining and kill 
probability output surfaces. 

Note that the output surfaces for the effective time remaining and kill probability 

have 441 (21×21) outputs.  All 441 results have their network centricity set to Future 

Network-Centric, the submerge time set to 2 hours, etc.  What differentiate them are the 

values of the initial SSN report delay and the mean CV processing delay.  The initial SSN 

report delay is varied from zero to two hours in steps of 0.1 hour (21 values), and the 

mean CV processing delay is varied from zero to one hour in steps of 0.05 hour (21 

values).   

The only result from the 441 cases that are used in the deterministic/stochastic 

comparison is that with initial SSN report delay of one hour (midpoint of zero and two 

hours), and the mean CV processing delay of 0.5 hours (midpoint of zero and one hour).   
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The required result shown below is extracted from the data used to construct the 

effective time remaining and Pk output surfaces: 

Effective time remaining = 1.72 hours 

Pk = 1.00 

Input 
Variables Deterministic Stochastic 

Distribution 

Stochastic 
Parameter 

1 

Stochastic 
Parameter 

2 

Stochastic 
Parameter 

3 
Network 
Centricity 

Futuristic 
Network NA Futuristic 

Network NA NA 

Number of 
Runs NA NA 1000 NA NA 

Submerge 
Time 2 hrs Beta 1.999 hrs 

(min) 
2.001 hrs 

(max) 
2 hrs 

(mode) 
Complexity 
Penalty 0.5 Constant 0.5 

(constant) NA NA 

Initial SSN 1 hr Gamma 0 min  
(min) 

60 mins 
(mean) NA 

CV 0.5 hr Exponential 30 mins 
(mean) NA NA 

SubGroup 0.5 hr Exponential 30 mins 
(mean) NA NA 

CVN 0.5 hr Exponential 30 mins 
(mean) NA NA 

UCAV 0.5 hr Exponential 30 mins 
(mean) NA NA 

DDG 0.125 hr Exponential 7.5 mins 
(mean) NA NA 

CG 0.125 hr Exponential 7.5 mins 
(mean) NA NA 

Sweep 
Width 0.25 nm Beta 0 nm  

(min) 
0.5 nm 
(max) 

0.25 nm 
(mode) 

Missile 
Speed 350 kts Beta 200 kts 

(min) 
500 kts 
(max) 

350 kts 
(mode) 

Time b/w 
Updates 0.5 hr Exponential 0.5 hrs 

(mean) NA NA 

KILO 
Speed 5 kts Beta 0 kt  

(min) 
10 kts 
(max) 

5 kts 
(mode) 

Table 2. Inputs Setup for Pair 1 (FCW).  Network centricity set to Future Network-
Centric, all input variables are set to their average values, except for submerge time and 
UCAV/Strike latency. 
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The parameters of the stochastic input variables are chosen such that their 

distributions’ means agree with the deterministic values.  See Table 2 for the inputs setup 

of Pair 1.  Note that because the data entry form for the stochastic model is designed to 

facilitate ease of use by the analyst, some input variables have different units, e.g., the 

CVN latency is stated in hours for the deterministic model but minutes for the stochastic 

model.  However, the point to note in the comparison is that the inputs are set to the same 

values (0.5 hours = 30 minutes). 

See Figure 13 and Figure 14 for the outputs10 from the stochastic model.  Note 

that probability (y-axis label) for both histograms refer to the proportion of the 1000 (in 

this case) replications with those values on the x-axis.  The number of replications for the 

stochastic simulation is fixed at 1000 for all the runs in this thesis, and that produces 

stochastic means estimates with halfwidths of less than 1.5 minutes for the effective time 

remaining, and 2.5 percent for Pk, in all the results stated in this report. 
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Figure 13. Stochastic Effective Time Remaining (MOP) for Pair 1 (FCW).  The mean 
stochastic effective time remaining is 1.75 hours, as opposed to the 1.72 hours from the 
deterministic model.  Note the spread of the effective time remaining that is not evident 
from the single value of 1.72 hours obtained from the deterministic model. 
                                                 

10 All the histograms in this report should be interpreted with the general rule, the smallest value on 
the x-axis shows the minimum value from the simulation run, and the largest value shows the maximum 
value.  The rightmost histogram bin is for data that lies between the second rightmost to the rightmost 
value. 
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Figure 14. Stochastic Kill Probability (MOE) for Pair 1 (FCW).  Probability on the y-
axis refers to the proportion of the 1000 replications with kill probability (Pk) shown on 
the x-axis.  Over 950 replications have Pks between 0.92 and 1.00. 

The means of the effective time remaining and kill probability are 1.75 hours and 

0.99 respectively.  Testing the null hypothesis: 

H0: The mean of the stochastic outputs is equal to the deterministic output 

For effective time remaining: 

8.5

1000
16.0

72.175.1

1000

72.1)1000(
1000 =−=−=

S
Xt  

where: 

 X  = mean of the stochastic outputs 

 S = standard deviation of the stochastic outputs 

For Pk: 

1.6

1000
052.0

199.0

1000

1)1000(
1000 −=−=−=

S
Xt  
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Both hypothesis tests have p-values << 0.01, which means we reject H0 at            

α = 0.01.  Although the mean of the stochastic outputs is not statistically equal to the 

deterministic output (according to the hypothesis tests), the stochastic results can still be 

considered to be consistent to the deterministic results, based on the minimal absolute 

deviation between the deterministic and stochastic results. 

Out of the 1000 replications, there are 22 cases where Pk < 0.9 (0.9 is an arbitrary 

choice).  The lowest Pk is 0.22, however, it is not visible in the histogram (Figure 14) due 

to the scale of the y-axis.  A clear pattern from these 22 cases is, low sweep width and 

high time between updates from the ISR submarine.  For the deterministic case, the Pk is 

guaranteed to be at 100 percent, as the effective time remaining for the search and 

detection effort is high at 1.72 hours, and with the search and detection parameters at 

their expected values, Pk is 100 percent.  The element of variance is missing from the 

deterministic case, which provides as much information as the means.  Note that in this 

case, we have little difficulty in sinking the KILO.  In a more difficult situation, the 

variance could cause a divergence between the stochastic simulation Pk and the 

deterministic one. 

2. Pair 2 Comparison (NCW) 

The Pair 2 comparison is exactly the same as Pair 1, except that the network 

centricity is changed to Network-Centric.  The deterministic result: 

Effective time remaining = 1.10 hours 

Pk = 1.00 

The stochastic outputs are in Figure 15 and Figure 16, with their means of 1.17 

hours and Pk of 0.94 respectively.  Hypothesis tests similar to the one conducted for Pair 

1 have been conducted for Pair 2, as well as the remaining four pairs of 

deterministic/stochastic comparisons, and their t-statistics are at least 4.0, and p-values 

much smaller than 0.01, implying that the deterministic and stochastic means are not 

statistically equal.  The detailed computations of the t-statistics for the hypothesis tests 

are left out from the report, as no additional insights can be gained from them. 
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Similar to the conclusions on Pair 1, the Pair 2 stochastic results are consistent 

with the deterministic results, based on the minimal absolute deviation between the 

deterministic and stochastic results.  However, there are 90 cases where Pk < 0.9.  The 

general pattern from these 90 cases is the low time remaining, only averaging 0.53 hours 

(as opposed to the 1.17 hours average for the entire 1000 cases). 
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Figure 15. Stochastic Effective Time Remaining (MOP) for Pair 2 (NCW).  Unlike 
the FCW case in Figure 13, there are close to three percent with effective time remaining 
of zero hour, i.e., no chance of mission success. 
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Pkill 

Figure 16. Stochastic Kill Probability (MOE) for Pair 2 (NCW).  The spread in Pk is 
nothing like the spread for the equivalent effective time remaining (Figure 15).  This is 
due to the greatly nonlinear transfer function of the search and detection mission. 

3. Pair 3 Comparison (PCW) 

Pair 3 comparison is exactly the same as Pair 1, except that the network centricity 

is changed to Platform-Centric.  The deterministic result: 

Effective time remaining = 0.50 hour 

Pk = 1.00  

The stochastic outputs are in Figure 17 and Figure 18, with their means of 0.71 

hour and Pk of 0.68 respectively.  Note that the deterministic model performs poorly, i.e., 

the deterministic means deviates significantly from the stochastic means.  The stochastic 

simulation model produces 223 cases (out of the 1000 replications) with zero Pk.  This is 

vastly inconsistent with the 100 percent Pk derived in the deterministic model.  The 223 

cases have zero Pk because there is no effective time remaining to conduct the search and 

detection mission.  The latencies (messaging and processing delays) in these 223 cases 

add up to more time than it takes for the enemy KILO submarine to submerge.  This, of 

course, never happens in a deterministic model.   
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Having said that, it should be noted that deterministic models could produce 

results close to stochastic simulation models.  This occurs when the results are clear, e.g. 

in another combat context, two opposing sides (blue-to-red) with 100-to-1 ratio, and 

similar combat effectiveness, will produce similar results from both deterministic and 

stochastic simulation model, 100 percent win for the blue force.  However, when it 

becomes a 1.1-to-1 ratio, the deterministic model will still predict a 100 percent win for 

the blue force, while the stochastic simulation model will likely produce the more 

realistic result that blue force may not always win. 
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Figure 17. Stochastic Effective Time Remaining (MOP) for Pair 3 (PCW).  The 
“spike” at zero hour is an accumulation of zero as well as negative time remaining (total 
latencies > submerge time, therefore time remaining = submerge time – total latencies = 
negative value). 

An abnormality observed from Figure 17 is the “spike” at zero hour.  This is due 

to the fact that zero hour is an accumulation of zero as well as negative time remaining 

(total latencies > submerge time, therefore, time remaining = submerge time – total 

latencies = negative value).  Total latencies is the sum of several individual latencies, and 

as long as one of the individual latencies gets a big number (which happens not so 

infrequently) in the stochastic replication, the time remaining will become negative, or 

practically no time remaining for the search and detection mission. 
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Figure 18. Stochastic Kill Probability (M
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x1, x2, … are the input variables, such as submerge time and 

missile speed 

 What is implied in the mathematical form is, the deterministic model (to 

the left of ≠) that takes in the expected values of the input variables need 

not produce the same result as the mean of the stochastic outputs, which 

use the input distributions, unless f is linear.  Of course, our simulation has 

many nonlinear components.   

c. A pattern that is apparent from the Pk histograms is, there is always a big 

proportion of data with Pk = 1, and the other data are divided without any 

obvious pattern amongst the other Pks.  The reason for that lies in the 

greatly nonlinear transfer function of the search and detection mission.  

For any set of search and detection parameters, Pk rises rapidly from zero 

to close to one within a small range of effective time remaining (zero hour 

to some “threshold” value).  As long as the effective time remaining for 

the search and detection mission exceeds the “threshold” value (different 

“thresholds” for different search and detection parameters), Pk is “pushed” 

towards one.  When there’s no effective time remaining for the search and 

detection mission, obviously Pk = 0, and for effective time remaining 

between zero hour and the “threshold”, Pk is distributed from zero to one. 

4. Pair 4 Comparison (Random Inputs Set 1) 

To add credibility to the benchmarking exercise, the next three pairs of results are 

based on random inputs.  To elaborate what is meant by random inputs, see Table 3 

column “Excel Implementation”.  An Excel spreadsheet is developed with those formulas 

in Table 3 column “Excel Implementation”, and run three separate times11 to generate the 

random input sets shown in Table 3 column “Random Set 1”, “Random Set 2”, and 

“Random Set 3”.  Note that the random numbers in Table 3 have been rounded to the 

appropriate decimal places according to the deterministic model input requirements.  

Also, the units for the input variables in Table 3 are consistent with the units for the 
                                                 

11 Note that each time the spreadsheet is run (press F9 key); the “RAND()” function in Excel will 
generate a uniform random number between zero and one. 

38 



deterministic model, e.g., the units for the CVN processing latency is hours (instead of 

minutes). 

 
Input 
Variables 

Excel Implementation Random 
Set 1 

Random 
Set 2 

Random 
Set 3 

Network 
Centricity 

=if(A1<0.333, “PCW”, 
if(A1<0.666, “NCW”, 
“FCW”) where 
Cell A1: =RAND() 

PCW NCW FCW 

Submerge 
Time =2*RAND() 0.39 1.52 1.06 

Complexity 
Penalty =RAND() 0.14 0.69 0.71 

Initial SSN =2*RAND() 0.40 2.00 0.60 
CV =RAND() 0.60 0.85 0.40 
SubGroup =RAND() 0.83 0.20 0.63 
CVN =RAND() 0.27 0.64 0.71 
Strike/UCAV =3*RAND() 0.25 1.31 0.98 
DDG =0.25*RAND() N/A N/A 0.09 
CG =0.25*RAND() N/A N/A 0.22 
Sweep Width =0.5*RAND() 0.35 0.44 0.22 
Missile Speed =200+300*RAND() 333 296 485 
Time b/w 
Updates =RAND() 0.82 0.29 0.25 

KILO Speed =10*RAND() 4.4 3.3 8.7 

Table 3. Random Inputs for Benchmarking.  The second column shows the Excel 
formulas, where the values in the remaining columns are generated randomly. 

The deterministic result for Pair 4: 

Effective time remaining = 0 hour 

Pk = 0 

The reason for zero Pk is the quick submerge time of the KILO submarine, which 

leads to zero time for the search and detection mission.   

The stochastic outputs are shown in Figure 19 and Figure 20, with means of 0.02 

hour and Pk of 0.09 respectively.  There are 62 cases (6.2 percent of the 1000 

replications) with Pk > 0.9.  An analysis of the inputs (random realizations of the 

replications rather than the input parameters, which are fixed for all 1000 replications) for 

these 62 cases show a strong pattern, that all 62 cases have initial SSN report delay that is 
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less than 0.35 hour (mean of the initial SSN report delay is 0.40 hour), and Strike latency 

that is less than 0.32 hour (mean of the Strike latency is 0.25 hour).   

The practical interpretation of this pattern is, if the enemy submarine is expected 

to submerge within a short time (mean of 0.39 hour in this Pair 4 comparison), all efforts 

must be put into achieving a low (< 0.35 hour) initial SSN report delay and low (< 0.32 

hour) Strike latency to have a good (> 0.9) Pk.  This implies the importance of initial 

SSN report and Strike latency in achieving a high Pk. 
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Figure 19. Stochastic Effective Time Remaining (MOP) for Pair 4 (Random Inputs).  
Due to the relatively quick submerge time of 0.39 hour, most of the replications have 
zero effective time remaining. 
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Figure 20. Stochastic Kill Probability (MO
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Figure 21. Stochastic Effective Time Remaining (MOP) for Pair 5 (Random Inputs).  
The mean stochastic effective time remaining is 0.12 hour as compared to zero hour for 
the deterministic result.  Note that some replications even go as high as 1.32 hours. 
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Figure 22. Stochastic Kill Probability (M
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6. Pair 6 Comparison (Random Inputs Set 3) 

The deterministic result for Pair 6: 

Effective time remaining = 0.73 hour 

Pk = 1.00  

The stochastic outputs are shown in Figure 23 and Figure 24, with means of 0.80 

hour and Pk of 0.99 respectively.  There are only 21 cases with Pk < 0.9.  The obvious 

pattern from these cases is the relatively high UCAV (note that UCAV latency for FCW 

is the equivalent of Strike latency for PCW and NCW) latencies, with an average of 2.5 

hours (mean of UCAV distribution for Pair 6 is only 0.98 hour).  This reinforces the 

conclusion from Pair 4, i.e., Strike/UCAV latency is a critical factor influencing effective 

time remaining, and subsequently Pk. 
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Figure 23. Stochastic Effective Time Remaining (MOP) for Pair 6 (Random Inputs).  
The mean stochastic effective time remaining is 0.73 hour, as opposed to the 0.80 hour 
from the deterministic model. 
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Figure 24. Stochastic Kill Probability (MO
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to some “threshold” value).  When the mean effective time remaining is 

significantly higher than the “threshold” value, both deterministic and 

stochastic models produce consistently high Pks.  The deterministic and 

stochastic Pks start to deviate when the mean effective time remaining 

drops near, or even below, the “threshold”.  In general, deterministic and 

stochastic models produce the same results only when the results are clear. 

b. If the total latency is longer than the submerge time of the enemy KILO 

submarine, it does not matter how strong the friendly assets’ capability in 

search and detection is, the Pk is still zero.  This reiterates the importance 

of C4ISR systems and procedures in coming up with timely decisions, 

before any of the physical assets can be effectively put into combat. 

c. The initial SSN report delay and the Strike latency shows up as critical 

factors determining effective time remaining (MOP) and Pk (MOE).  This 

observation confirms the potential of RAND’s framework of metrics and 

measures, which models the importance of the initial SSN report delay and 

Strike latency through Equation (12) (as part of RAND’s framework), 

with their wj set to 1. 

d. All the patterns observed/discussed in this section are not possible (or 

more difficult) without the stochastic simulation model. 
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IV. ANALYSIS 

In this chapter, the stochastic simulation model developed is used to answer three 

questions that RAND, and their sponsors are interested in: 

a. Does improved C4ISR systems and procedures produce a quantifiable 

improvement in the battle outcome, i.e., does kill probability increase in 

the TCT vignette? 

b. Which are the critical processing and messaging delay times that impact 

kill probability the most? 

c. How should platforms be assigned to launch the UCAV in the Future 

Network-Centric system? 

A. NETWORK CENTRICITY COMPARISON 

A key objective of this thesis is to assess the effects of improved C4ISR systems 

and procedures on battle outcomes.  What it translates to in the TCT vignette case study 

is, based on RAND’s framework of measures and metrics, do Future Network-Centric 

systems and procedures produce higher kill probability (Pk) than Platform-Centric or 

Network-Centric systems and procedures?  This is the question to be answered in this 

section.  The procedure used to compare the three networks is: 

a. Generate m sets of inputs (same inputs for all three networks) to be fed to 

the three networks.  

b. Determine the stochastic outputs for the three networks. 

c. Compare the three sets of outputs. 

1. LHS Variant 

An easy way to generate the required m sets of inputs is to adopt the method 

outlined in Table 3 (will be referred to as Simple Random method), which is to randomly 

(within the bounds stated in the deterministic model) generate the various input variables 

to make up one set of inputs.  Repeat the procedure m times.   
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The other method, which is the preferred method, is a variant of Latin Hypercube 

Sampling (LHS), and it will be called the LHS variant in this report.  The procedure of 

the LHS variant is: 

a. Divide each input variable (all continuous in our case) into n equal 

intervals.  The bounds of the input variables are shown in Table 4.  Note 

that the units for all the time variables have been changed (from the 

original simulation model) to be in hours.  This is because it is easier to 

analyze the results with a common time unit. 

Input Variables Lower Bound Upper Bound

Submerge Time (hrs) 0.2 2 

Complexity Penalty 0.1 1 

Initial SSN (hrs) 0.2 2 

CV (hrs) 0.1 1 

SubGroup (hrs) 0.1 1 

CVN (hrs) 0.1 1 

Strike/UCAV (hrs) 0.3 3 

DDG (hrs) 0.025 0.25 

CG (hrs) 0.025 0.25 

Sweep Width (nm) 0.05 0.5 

Missile Speed (kts) 200 500 

Time b/w Updates (hrs) 0.1 1 

KILO Speed (kts) 1 10 

Table 4. Inputs’ Bounds for LHS Variant.  In general, the lower bound is set to 10 
percent of the upper bound. 
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The upper bounds of the input variables are the same as those used in the 

deterministic model.  Most of the lower bounds in the deterministic model 

are very close to zero, except the missile speed with lower bound of 200 

kts.  For this analysis, since the bounds are used to define the range 

whereby the means of the input variables are varied, it is logical for the 

lower bounds to be non-zero.  The lower bounds are set at 10 percent of 

their upper bounds. 

b. Given that 10 percent has been “lopped off”, the remaining 90 percent is 

used to generate 90 equal intervals, i.e., n = 90.  That means for CVN 

latency, there are 91 endpoints to the 90 intervals, 0.1 hour, 0.11 hour, 

0.12 hour, …, 1 hour.  This process of generating 91 endpoints is repeated 

for all input variables. 

c. The next step involves the random selection (without replacement) of an 

endpoint value from each variable to make up a set of inputs.  There are a 

total of 91 sets of inputs.  The S+ codes to generate the 91 sets of inputs, 

given the bounds and n, are attached in Appendix B.  A sample (only the 

first few input variables are shown) of the inputs generated is also attached 

in Appendix B, Table 12.  The advantage of the LHS variant over the 

Simple Random method is the improvement in coverage of the input 

space.  In addition, LHS has been shown to be efficient under a large 

range of conditions (Reference 2). 

d. A total of 2002 (22 sets of 91) sets of inputs are generated.  This is a high 

number, chosen to enable the comparison of the networks to be conducted 

with a high confidence level. 

2. Outputs from the Three Networks 

The outputs (MOP and MOE) generated from the 2002 sets of inputs for the three 

networks are shown in Figure 25 and Figure 26. 
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Figure 25. Network Comparison in Effective Time Remaining (MOP).  The Future 
Network-Centric (FCW, mean of 0.68 hour) systems and procedures produce 
significantly higher effective time remaining than the Platform-Centric (PCW, mean of 
0.11 hour) and Network-Centric (NCW, mean of 0.30 hour) cases. 
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Figure 26. Network Comparison in Kill Probability (MOE).  The Future Network-
Centric (FCW, mean Pk of 0.78) systems and procedures produce significantly higher Pk 
than the Platform-Centric (PCW, mean Pk of 0.20) and Network-Centric (NCW, mean Pk 
of 0.42) cases. 

3. Comparison of Networks 

The means of the MOP and MOE outputs are listed in Table 5.  As mentioned 

earlier, all the simulation runs in this thesis produce stochastic means estimates with 

halfwidths of less than 1.5 minutes for the effective time remaining, and 2.5 percent for 

Pk.  This implies that Future Network-Centric (FCW) systems and procedures produce 

statistically (and practically) superior battle outcomes than Platform-Centric (PCW) and 

Network-Centric (NCW) cases. 

The results confirm the potential of RAND’s framework of measures and metrics 

in modeling the general effects of C4ISR systems and procedures on battle outcomes.  

What remains to be done is the validation and calibration of the framework, i.e., fine-

tuning the framework to achieve results that are consistent with the real world. 
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Network Centricity Effective Time Remaining (hrs) Pk 

PCW 0.11 0.20 

NCW 0.30 0.42 

FCW 0.68 0.78 

Table 5. Network Comparison of MOP and MOE.  The Future Network-Centric 
(FCW) systems and procedures performs significantly better than the Platform-Centric 
(PCW) and Network-Centric (NCW) cases. 

B. CRITICAL INPUT VARIABLES 

This section answers the question: Which variables affect Pk significantly?  The 

FCW network is used for this analysis as it includes all the input variables, specifically 

the destroyer (DDG) and cruiser (CG) polling latencies that are applicable only to FCW. 

The 2002 input sets used in the previous section are re-used in this analysis.  

Several models within Clementine12 are used to determine the critical variables that 

affect Pk, and extract interesting patterns/relationships within the data.  Clementine is a 

data mining application.  Data mining offers a strategic approach to finding useful 

relationships in large data sets.  The main reasons for using Clementine for the data 

analysis effort are that it’s easy to use, and easy to interpret the results generated.  In 

contrast to more traditional statistical methods, the analyst does not necessarily need to 

know what they are looking for when they start the exploration.  The analyst can explore 

the data, fitting different models and investigating different relationships, until useful 

information is found. 

The Clementine Desktop (Figure 27) makes data exploration easy.  The interface 

uses an approach called visual programming.  Various nodes in the workspace represent 

different objects and actions.  The analyst connects the nodes to form streams, which, 

when executed, enable the analyst to visualize relationships and draw conclusions.  

Streams are like scripts: which can be saved and reused with different data files. 
                                                 

12 Clementine is the software used for the data mining course taught at NPS OR department.  
Interested readers can visit the official website at “http://www.spss.com/spssbi/clementine/”. 
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The Clementine Desktop consists of: 

a. Stream pane: The stream pane is the largest area of the Clementine 

desktop, and is where you build and manipulate data streams.  

b. Palettes: The palettes are located across the bottom of the desktop.  Each 

palette contains a related group of nodes that are available to add to the 

data stream.  For example, the Sources palette contains nodes that you can 

use to read data into your model, and the Graphs palette contains nodes 

that you can use to explore your data visually.  

c. Generated Models palette: The Generated Models palette is located to the 

right of the stream pane, and it contains the results of machine learning 

and modeling that you have done.  

 
Figure 27. Clementine Desktop.  The user drags-and-drop icons from the palettes 
located across the bottom of the DeskTop, build and manipulate data streams on the 
Stream Pane (drawing board), and obtain the models’ outputs from the Generated Models 
Palette. 
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Before the raw data is fed into Clementine, it needs some “touch-up” to maximize 

the power of the data mining models to be employed.  The rule-generating model in 

Clementine that is used, called C5.0 (see Appendix C for a brief description on C5.0) 

requires that the output (Pk) analyzed be of type set (e.g., true-false, high-medium-low), 

i.e., outputs that can be classified into countable classes.  In addition to C5.0, there are 

other rule-generating models that accept continuous outputs, however, in my opinion, 

they do not produce rulesets as informative as the one produced by C5.0 for the data set 

that we are working with. 

As such, Pk has been divided into three classes13 (see Table 6) to facilitate the 

analysis: 

Pk Range PkClass 
< 0.4 1 (low) 
0.4 ≤ Pk < 0.8 2 (medium) 
≥ 0.8 3 (high) 

Table 6. PkClass Definition.  The choices on the number of Pk classes and the 
definition of the range for each class are made to separate those cases with high 
likelihood (PkClass 3, high) of killing the KILO submarine from those with a good 
chance of mission failure (PkClass 1, low) and those cases in between (PkClass 2, 
medium). 

The distribution of PkClass in the 2002 FCW data set is shown in Figure 28.  

About 55 percent of the 2002 cases have Pk ≥ 0.8 (PkClass 3), and there’s only a small 

percentage of cases with Pk < 0.4 (PkClass 1). 

Note that a common practice to derive better-quality rules (rules that apply to a 

significant proportion of the cases, and predicts accurately) is to ensure that the classes 

contain almost equal number of cases.  This method has been tried on the current data set, 

with the Pk range bounds set at 0.7 and 0.9.  No improvement is achieved in the quality 

of the rules/patterns/relationships extracted from the data set.  Thus, the PkClass 

definition is fixed as that stated in Table 6, which at least provides logical definitions for 

the PkClass. 

                                                 
13 The choices on the number of Pk classes and the definition of the range for each class are made to 

separate those cases with high likelihood (PkClass 3, high) of killing the KILO submarine from those with 
a good chance of mission failure (PkClass 1, low) and those cases in between (PkClass 2, medium). 
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Figure 28. PkClass Distribution.  Note the small proportion (4.05 percent) of 
replications with Pk < 0.4 (PkClass 1).  The numbers in the third column add up to 100 
percent, and the fourth column adds up to 2002 replications. 

1. Neural Network 

The first data mining model from Clementine to be used is the neural network 

(Reference 3) model.  See below for the neural network (NN) model generated from the 

2002 cases for FCW. 

 
Neural Network "PKCLASS" architecture 
 
Input Layer     : 13 neurons 
Hidden Layer #1 : 6 neurons 
Output Layer    : 3 neurons 
 
Predicted Accuracy :  94.60% 
 
Relative Importance of Inputs 
STRIKE               : 0.52444 
Initial SSN Report   : 0.51148 
DDG                  : 0.50546 
Submerge Time (T)    : 0.31567 
Mean time between updates (tu) : 0.19936 
CG                   : 0.07770 
Complexity Penalty ( b ) : 0.06990 
KILO Speed (w)       : 0.06732 
Mean Sweep Width (s) : 0.06287 
CVN                  : 0.05975 
CV                   : 0.04829 
Missile Speed (v)    : 0.03489 
SUBGROUP             : 0.01900 
 

See the notes below for interpretation of the NN model. 

Architecture: The architecture or topology of the network is described.  For each 

layer in the network, the number of units in that layer is listed. 
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Predicted Accuracy: This is an index of the accuracy of the predictions.  For 

symbolic outputs, this is simply the percentage of records for which the predicted value is 

correct.  For numeric targets, the calculation is based on the differences between the 

predicted values and the actual values in the training data.  

Relative Importance of Inputs: The input variables are listed in order of 

importance, from most important to least important.  The value listed for each input is a 

measure of its relative importance, varying between zero (a variable that has no effect on 

the prediction) and 1.0 (a variable that completely determines the prediction). 

Note that it is common practice in data mining analysis to split the data set 

equally into a training set and a test set.  The training set is used to develop the models 

and the test set is then used to evaluate the quality of the models developed.  This practice 

works well if the objective of the analysis is to develop a predictive model, and it guards 

against overfitting.  However, this practice is not adopted for the current analysis as our 

main objective is to develop a better feel of how the input variables affect the battle 

outcome, rather than trying to predict the battle outcome from the input variables, since 

we already know how to do that deterministically. 

The interesting portion of the NN model output is the “Relative Importance of 

Inputs” section, which shows that the three most critical factors that determine PkClass 

are the Strike/UCAV, initial SSN report, and DDG latencies.  These three nodes happen 

to be the only three nodes in the FCW Task Force.  This observation confirms the 

potential of RAND’s framework of metrics and measures which models the importance 

of the three factors through Equation (12) (as part of RAND’s framework), with their wj 

set to 1.  The other nodes that are not in the FCW Task Force have their wj set to 0.5.  See 

Table 7 for the wj settings for the three different network centricity.  Note that the wj for 

DDG and CG are zero for the PCW and NCW systems, as they are not part of the PCW 

and NCW systems. 
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Latency PCW wj NCW wj FCW wj 

Initial SSN 0.5 0.5 0.5 

CV 1 1 1 

SubGroup 1 0.5 0.5 

CVN 1 1 0.5 

Strike/UCAV 1 1 1 

DDG 0 0 1 

CG 0 0 0.5 

Table 7.  wj for Different Network Centricity.  Different nodes make up the Task 
Force under different network centricity. 

The importance of the Strike/UCAV and initial SSN report latencies is reinforced 

by looking at the plot (Figure 29) of the two latencies, with points of different PkClass in 

different color.  The obvious pattern (not so obvious without color) from the plot is, there 

are no cases with Pk < 0.8 (PkClass 1 and 2) in the lower left corner (shape of a triangle) 

of the plot.  This observation does not provide information unexpected by the analyst; 

low latencies lead to high effective time remaining to conduct the search and detection 

mission, which leads to high Pk.  However, what is important about this observation is, 

regardless of the values (within the bounds defined) of the other input variables in the 

system, as long as the Strike/UCAV and initial SSN report latencies can be kept within 

the triangle defined by the plot, we are assured of a high Pk. 
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Figure 29. Strike/UCAV vs. Initial SSN Report Plot.  As long as the Strike/UCAV 
and initial SSN report latencies lie within the triangle shown, regardless of the values 
(within the bounds defined) of the other input variables, Pk ≥ 0.8. 

In order to confirm that it is indeed the working of RAND’s framework of metrics 

and measures that causes the order of the latencies appearing on the NN model, the PCW 

results are analyzed using the NN model as well.   
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The results: 

 
Neural Network "PKCLASS" architecture 
 
Input Layer     : 11 neurons 
Hidden Layer #1 : 6 neurons 
Output Layer    : 3 neurons 
 
Predicted Accuracy :  96.13% 
 
Relative Importance of Inputs 
Strike               : 0.31170 
Initial SSN Report   : 0.26339 
SUBGROUP             : 0.16012 
Submerge Time (T)    : 0.12244 
CV                   : 0.10718 
Mean time between updates (tu) : 0.06753 
CVN                  : 0.04239 
KILO Speed (w)       : 0.02589 
Complexity Penalty ( b ) : 0.01282 
Missile Speed (v)    : 0.00790 
Mean Sweep Width (s) : 0.00532 

 

Note that SubGroup, which is in the PCW Task Force (wj = 1 for PCW), has 

“jumped” to near the front of the list, while being last in the list for FCW.  Another 

reason that may explain the importance of an input variable is its range, i.e., the 

Strike/UCAV latency varies from 0.3 to 3 hours, while CV varies from 0.1 to 1 hour, 

given that they have the same wj settings in the PCW network, the latencies with the 

bigger numbers will have more “weight” in determining Pk. 

2. C5.0 Rulesets 

The C5.0 model (see Appendix C for a brief description) in Clementine can 

produce two kinds of models, decision tree or rulesets.  The rulesets are the ones that are 

used in this analysis, as any patterns/relationships in the data are easy to extract and 

interpret from the rulesets.  The rulesets (for output PkClass) generated from the FCW 

data are shown in Appendix D. 

Note that there is a pair of numbers accompanying each rulesets.  These numbers 

show information on the number of cases to which the rule applies (instances) and the 

proportion of those cases for which the rule is true (confidence). 
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Note that confidence is calculated as: 

(1 + number of cases where rule is correct) / (2 + number of cases to which rule applies) 

This calculation of the confidence estimate adjusts for the process of generalizing 

rules from a decision tree (which is what C5.0 does when it creates a ruleset). 

A good rule is one that has: 

a. High number of instances: The rule applies to a large proportion of the 

data set. 

b. High confidence: For those cases that satisfy the conditions of the rule, the 

rule predicts the correct PkClass most, if not all of the time. 

Note that the main objective in using C5.0 is not to predict PkClass from the 

various input variables, since we know exactly how to calculate Pk from the input 

variables.  Rather, we aim to gain a better feel of the weightage of the various input 

variables in the overall combat picture. 

An example of how the rules should be interpreted: Rule #1 for PkClass 3 (Pk >= 

0.8): If the mean submerge time of the enemy submarine > 1.2 hours, and the mean initial 

SSN report latency <= 1.4 hours, and mean DDG latency <= 0.09 hour, then there is a 

98.2 percent chance that Pk >= 0.8, regardless of the other input variables. 

A few interesting rules generated from the C5.0 model are highlighted for 

discussion. 

Rule#1 for PkClass 1 (Pk < 0.4):  

        if  Submerge Time (T) <= 0.92 

        and  Initial SSN Report > 1.3 

        and  Strike > 1.77 

        and  DDG > 0.142 

        and  CG > 0.067 

        then -> 1 (56, 0.845) 

With a low submerge time and high latencies; Pk has a high chance of being low 

(< 0.4).  There are 9 cases out of the 56 cases that satisfy the conditions with PkClass 2, 

and the maximum Pk from these 9 cases is 0.54, with 6 cases below 0.50. 
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Rule #1 for PkClass 3 (Pk >= 0.8):  

        if  Submerge Time (T) > 1.2 

        and  Initial SSN Report <= 1.4 

        and  DDG <= 0.09 

        then -> 3 (166, 0.982) 

Analyzing the data shows that of the 166 cases that satisfy the condition, there are 

two cases that are PkClass 2, instead of the predicted PkClass 3.  However, these two 

case are exceptionally high PkClass 2, and their Pks are 0.7981, 0.7999, that is, they can 

almost be considered PkClass 3. 

Rule #2 for PkClass 3 (Pk >= 0.8):  

        if  Strike <= 1.56 

        and  DDG <= 0.09 

        and  Mean time between updates (tu) <= 0.6 

        then -> 3 (158, 0.981) 

Analyzing the data shows that of the 158 cases that satisfy the condition, there are 

two cases that are PkClass 2, instead of the predicted PkClass 3.  However, these two 

case are high PkClass 2, with Pks of 0.77 and 0.78. 

This rule is more useful than the previous rule in that it says, if the friendly forces 

can keep the mean Strike/UCAV and DDG latencies below certain times, and get timely 

updates, there is a high chance of having a high Pk, regardless of how soon the enemy 

submerges, or how other input variables vary.  This rule is important in that it sets target 

levels that the friendly forces can work towards. 

Rule #3 for PkClass 3 (Pk >= 0.8):  

        if  DDG <= 0.045 

        then -> 3 (197, 0.98) 

If the friendly forces can achieve a mean destroyer (DDG) latency of <= 0.045 

hour (2.7 minutes), then there’s a 98 percent chance that Pk >= 0.8, regardless of the 

other input variables.  Analyzing the data shows that of the 197 cases that satisfy the 

condition, there are three cases that are PkClass 2, instead of the predicted PkClass 3.  

However, these three cases are high PkClass 2, and their Pks are 0.74, 0.77, and 0.77, 

very close to the PkClass 3 range. 
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The default rule says that if none of the rules apply to a case, assign PkClass 3 to 

the case.  This is a direct result of PkClass 3 being the majority class  

Observations/Conclusions from the C5.0 model: 

a. The input variables that show up most in the rules are the same ones 

“leading” the list for the neural network model developed in the previous 

section, i.e., Strike/UCAV, initial SSN, DDG, and submerge time. 

b. There are fewer rules for PkClass 1 because only about 4 percent of the 

2002 cases are of PkClass 1 (see Figure 28). 

3. Linear Regression 

The Clementine linear regression model estimates the best fitting linear equation 

for predicting the output based on the input variables.  The regression equation represents 

a straight line or plane that minimizes the squared differences between predicted and 

actual output values.  For this analysis, all 13 input variables are used to fit an equation 

for Pk (not PkClass as it will not be logical).  The resultant linear regression equation: 

    -0.004307 * KILO Speed (w) + 

    -0.132599 * Mean time between updates (tu) + 

    0.000006 * Missile Speed (v) + 

    0.068051 * Mean Sweep Width (s) + 

    -0.183708 * CG + 

    -1.29667 * DDG + 

    -0.109762 * Strike + 

    -0.025286 * CVN + 

    -0.0106 * SUBGROUP + 

    -0.016936 * CV + 

    -0.186999 * Initial SSN Report + 

    -0.012818 * Complexity Penalty ( b ) + 

    0.109087 * Submerge Time (T) + 

    1.361112 

Similar conclusions from the neural network and C5.0 ruleset models are 

obtained, i.e., critical inputs have relatively bigger coefficients than those unimportant 

inputs.  Note that another factor that may affect the size of the coefficients are the ranges 
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of the variables, i.e., missile speed with a range between 200 and 500 kts will generally 

have a lower coefficient that complexity penalty that ranges from zero to one, although 

both these variables may be as insignificant in affecting Pk. 

As mentioned, the main objective of this analysis is to obtain a better feel of the 

importance of each input variable in the final battle outcome, and not to build a model to 

predict Pk from the inputs, since the exact formulas for calculating Pk from the inputs are 

known.  Therefore, no further exploration or analysis of the linear regression model is 

conducted. 

In this section, three data mining models have been used to determine the 

variables that have the greatest impact on the kill probability.  All three models arrive at 

the same conclusion that the critical variables to the time-critical target vignette, Future 

Network-Centric system, are the Strike/UCAV latency, initial SSN report latency, DDG 

latency, and enemy submarine submerge time.  The two general factors that determine 

the impact of an input variable on kill probability are: (i) whether the system is part of the 

Task Force and (ii) the range of the input variable. 

C. POLLING OPTIONS FOR FCW 

The question to be answered in this section is: How should platforms be assigned 

to launch the UCAV in the Future Network-Centric system?  This is essentially a 

command and control question that addresses the way the richly connected network is 

utilized to support combat operations.  The three options (see Table 8)14 require different 

times for collaboration and UCAV fly out. 

                                                 
14 Table extracted from Reference 1. 
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Option Process Impact on Operations 

Case 1: 
Complete 
Polling at 
execution time 

Poll all potential combatants with 
UCAVs and select the one that 
can get to the target quickest 

Large cost in collaboration time 
Most reliable solution 
Fastest fly out time for UCAV 

Case 2: 
Periodic 
selection of a 
subset of 
combatants 
with UCAVs 

Poll a select subset of combatants 
with UCAVs considered to be in 
the best position to respond.  
Repeat this process periodically 

Less cost in collaboration time 
Least reliable solution 
Moderate increase in fly out time 

Case 3: 
Periodic 
complete 
polling of 
combatants 
with UCAVs 

Poll all combatants with UCAVs 
periodically and designate one as 
the “duty” launcher 

Moderate cost in collaboration 
time 
Less reliable solution 
Possibly greatest fly out time for 
the UCAV 

Table 8. Polling Options for FCW.  Different polling options have different effects 
on collaboration and UCAV fly out. 

1. Case 1: Complete Polling at Execution Time 

Although the most reliable method (in the sense that the target’s location is 

known and therefore, distances to the target are known), considerable time is absorbed by 

collaborating to arrive at an “optimal” selection based on distance to the target.  

Calculating the distances to the target from the candidate platforms at execution time 

means that the time required to fly to the release point for the SLAM-ER is minimized.   

2. Case 2: Periodic Polling of a Subset at Execution Time 

In this case, a periodically selected subset of the platforms with the UCAV is 

polled at execution time.  Because the number of platforms polled is reduced, the 

collaboration time required at execution is not as great.  The fact that the pre-selection is 

time consuming has little impact on the delay at execution time.  The reliability of the 

pre-selected choice in terms of the time required to reach the target is however, reduced.  

There are two reasons for this: (i) the selection of the subset of platforms was based on 

conditions that may not be prevalent at execution time, and (ii) closely related is the fact 

that the platform that is selected to execute may be sub-optimal when compared to the 
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entire set of platforms with the UCAV.  The impact on fly out time is that it will likely be 

extended. 

3. Case 3: Periodic Complete Polling 

In this case, the entire set of platforms with the UCAV is polled periodically.  The 

fact that polling takes place prior to the operation means that little time is spent deciding 

which platform will launch the UCAV at execution time.  The reliability of the pre-

selected choice however, is less reliable than selection at execution time.  In this case, the 

fact that all platforms are polled mitigates the deficiency somewhat.  The impact on fly 

out time for the UCAV is greater than the first case, but not as long as the second. 

4. Analysis of the Polling Options 

Table 9 lists the mean times associated with the three options discussed.  Note 

that only the times that are likely to vary based on the conditions described are listed.  

The procedure adopted to compare the effectiveness of the polling options is: 

a. Using the same 2002 input sets generated earlier, replace the latencies for 

those input variables stated in Table 9 with the values for Case 1. 

b. Run the stochastic simulation under FCW. 

c. Repeat the above steps for Case 2 and 3. 

Option DDG 
Polling 

CG 
Polling 

CVN 
Polling 

CV 
Polling 

UCAV 
Fly out 

Total 

Case 1: Complete 
Polling at execution 
time 

15 10 17 17 5 64 

Case 2: Periodic 
selection from a subset 
of UCAV platforms 

8 7 - - 20 35 

Case 3: Periodic 
complete polling of 
UCAV platforms 

8 7 9 9 10 43 

All times in minutes. 

Table 9. Time Estimates for Polling Options.  Different polling options require 
different times for collaboration and UCAV fly out. 
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The MOP and MOE histograms are shown in Figure 30 and Figure 31 

respectively. 
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Figure 30. Polling Options Comparison in Effective Time Remaining (MOP).  
Periodic selection from a subset of UCAV platforms (polling option Case 2) produces 
slightly higher effective time remaining than the other two polling options. 

The means of the MOP and MOE are stated in Table 10.  Note that the results in 

the current section show superior performance (higher Pk) compared to the previous 

sections.  This is because the latencies used in the three polling options have means 

significantly lower than those of previous sections, which leads to higher effective time 

remaining and subsequently, higher Pk. 
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Figure 31. Polling Options Comparison in Kill Probability (MOE).  Periodic selection 
from a subset of UCAV platforms (polling option Case 2) produces slightly higher kill 
probability (Pk) than the other two polling options. 

Polling Option Effective Time Remaining (hrs) Pk 
Case 1 0.99 0.966 
Case 2 1.04 0.973 
Case 3 1.00 0.969 

Table 10. Polling Options Comparison of MOP and MOE.  No significant 
differences between the three polling options. 

The results show that Case 2 is slightly more effective than the other two polling 

options, but does that constitute a significant practical difference?  The analysis from the 

stochastic simulation model shows that there are no significant practical differences 

between the three polling options.  However, if this conclusion is inconsistent with the 

real-world situation, there is a need to review the framework of measures and metrics.  

Have the positive effects of collaboration been overly “exaggerated”, so much so as to 

“squeeze” the effects of latencies, that a difference of 29 minutes (Table 9 Case 1 total 

latency of 64 minutes vs. Case 2 total latency of 35 minutes) in latencies when passed 

through the framework produce outputs that are insignificantly different.  Or are there 
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other reasons?  This will be part of the future validation required on the framework of 

measures and metrics.  
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V. CONCLUSIONS 

Based on RAND’s framework of measures and metrics to assess the impact of 

C4ISR systems and procedures on battle outcomes, a stochastic simulation model has 

been developed, benchmarked, and utilized to analyze issues that are important to 

RAND’s research for the U.S. Navy. 

A. BENCHMARKING 

The developed simulation model is benchmarked against RAND’s existing 

deterministic model, and it produces consistent results with the deterministic model, i.e., 

low kill probability (MOE) in the stochastic model generally goes with low kill 

probability in the deterministic model, and vice versa.  Having said that, the mean of the 

stochastic outputs should not be expected to match up exactly to the deterministic output, 

and that is a consequence of the nonlinear transfer function from RAND’s framework of 

metrics and measures. 

For any set of search and detection parameters, Pk rises rapidly from zero to close 

to one within a small range of effective time remaining (zero hour to some “threshold” 

value) to conduct the search and detection mission.  When the mean effective time 

remaining is significantly higher than the “threshold” value, both the deterministic and 

stochastic models produce consistently high Pks.  The deterministic and stochastic Pks 

start to deviate when the mean effective time remaining drops near, or even below the 

“threshold”. 

In general, deterministic and stochastic models produce the same results only 

when the results are clear, e.g. in another combat context, two opposing sides (blue-to-

red) with 100-to-1 ratio, and similar combat effectiveness, will produce similar results 

from both deterministic and stochastic simulation model, a 100 percent win for the blue 

force.  However, when it becomes a 1.1-to-1 ratio, the deterministic model will still 

predict a 100 percent win for the blue force, while the stochastic simulation model will 

produce a more realistic result that blue force may not always win. 
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B. NETWORK CENTRICITY COMPARISON 

The stochastic simulation results show that Future Network-Centric systems and 

procedures produce significantly higher kill probabilities than the Platform-Centric and 

Network-Centric case.  The results confirm the potential of RAND’s framework of 

measures and metrics in modeling the general effects of C4ISR systems and procedures 

on battle outcomes.  What remains to be done is the validation of the framework, i.e., 

fine-tuning the framework to achieve results that are consistent with the real world. 

C. CRITICAL INPUT VARIABLES 

Three data mining models have been used to determine the variables that have the 

greatest impact on the kill probability.  All three models arrive at the same conclusion 

that the critical variables to the time-critical target vignette, Future Network-Centric 

system are the Strike/UCAV latency, initial SSN report latency, DDG latency, and enemy 

submarine submerge time.  The two general factors that determine the impact of an input 

variable on kill probability are: (i) whether the system is part of the Task Force and (ii) 

the range of the input variable. 

D. POLLING OPTIONS FOR FCW 

There are no significant differences between the three polling options to assign 

the platform for launching the UCAV in the Future Network-Centric system.  If this 

conclusion is inconsistent with what we expect in real-world situations, there is a need to 

review the framework of measures and metrics. 
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APPENDIX A. SIMULATION DEVELOPMENT 

A. VARIABLE DISTRIBUTIONS 

Table 11 documents the distributions used to represent the various latencies and 

the search and detection variables.  The distributions have been discussed and agreed 

with RAND (and through them, their Navy sponsors.) 

Input Variable Distribution 
Submerge Time Beta 
Complexity Penalty Constant 
Initial SSN Report Gamma 
CV 
SubGroup 
CVN 
UCAV 
DDG 
CG 

Exponential 

Mean Sweep Width Beta 
Missile Speed Beta 
Mean Time b/w Updates Exponential 
KILO Speed Beta 

Table 11. Variable Distributions.  The distributions have been discussed and agreed 
with RAND (and through them, their Navy sponsors). 

B. DATA ENTRY FORM 

The data entry form (Figure 32) is created using Visual Basic for Applications 

(VBA) in Excel.  It is activated by clicking the "Simulation EDA Tool" command button 

in two locations, “Vignette2” worksheet cell D23, and “SimGen” worksheet cell C3. 
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Figure 32. Data Entry Form.  The stochastic simulation model requires parameters 
for 13 input variables, segregated into three frames, “Global Settings”, “Latencies”, and 
“Detection”. 
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Features Description (in order of top-down, left-to-right on the form) 

a. Network Centricity: Select the network centricity to be analyzed.  

b. Number of Runs: Enter the number of runs/replications for the 

simulation.  Estimated run time is approximately 50 seconds for 1000 

runs on a Pentium III, 667 Mhz PC with 128 Mb RAM.  In the current 

model design, the number of rows in a single worksheet restricts the 

maximum number of replications, which at 65,536 is more than sufficient 

for the purposes of this study. 

c. Global Settings 

i. Submerge Time (hrs): The distribution is beta with three 

parameters, minimum, maximum and mode, from left to right. 

ii. Complexity Penalty: This variable is a constant between zero and 

one.  It is used as a multiplying factor to adjust b in Equation (15). 

d. Latencies 

Note that the units of time for submerge time and the other time-related 

latencies are different.  This is a direct result of the fact that latencies are 

usually much shorter than submerge time, and so it’s easier for the users to 

provide the latencies in minutes rather than in hours. 

i. Initial SSN Report (minutes): The distribution is gamma with two 

parameters, minimum and mean.  However, there need to be 3 

parameters to pin down a gamma distribution. I have currently 

assumed that the parameters alpha = beta.   

ii.. CV to CG (minutes): The distributions are exponential with mean 

as the only parameter. 

e. Detection 

i. Sweep Width (nm), Missile Speed (kts), and KILO Speed (kts): 

The distributions are beta with three parameters, minimum, 

maximum and mode, from left to right. 
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ii. Time Between Updates (hrs): The distribution is exponential with 

mean as the only parameter. 

f. Command Buttons (at bottom of the form) 

i. Simulate: The inputs entered on the data entry form are saved in 

the spreadsheet, and the simulation will start.  After the simulation 

ends, the data entry form is closed and the results (MOP and MOE 

histograms and confidence intervals) are presented on the 

spreadsheet. 

ii. Save: The inputs entered on the data entry form are saved in the 

spreadsheet.  The data entry form will remain open.  This is useful 

when you need to verify certain data in the midst of a data entry 

session, and you want to save the portion of the data that are 

already entered. 

iii. Cancel: The changes made on the current data entry form are 

ignored, and the data entry form will be closed. 

iv. Close button at the top right hand corner: Same effect as Cancel. 

g. Entering Inputs: The user can enter data sequentially using the "Enter" or 

"Tab" keys.  If the user needs only to change a few parameters, it may be 

easier to use the mouse to highlight the input cells that require change. 

h. Tool Tip: All the input cells provide the user with the type of parameters 

required, i.e., when you move the mouse over an input cell, the screen will 

show “minimum”, “maximum”, “mode”, or “mean”. 

i. Data Verification: The spreadsheet automatically verifies the data that the 

user has entered before saving or simulating, i.e., the spreadsheet prompts 

the user to re-enter values if, e.g., minimum > maximum for one of the 

beta distributions. 

j. Distribution Parameters: Other than saving the raw data on the form to the 

spreadsheet when the “Save” button is clicked, the alphas and betas of the 
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distribution are calculated from the minimums, means, etc., and saved in 

the worksheet. 

C. MS EXCEL IMPLEMENTATION  

The main benefit of implementing the RAND EDA tool stochastic simulation in 

MS Excel is its widespread availability in DoD organizations.  It provides a universal 

platform that users of all levels are comfortable with, and thus reduces any unnecessary 

startup time to familiarize with the application’s user environment. 

Furthermore, since the original RAND EDA tool is implemented in Excel, it 

makes sense to “attach” the stochastic simulation model to the original tool as long as the 

limitations of the Excel applications does not overly restrict the analysis capability 

required of the study, which is the case here. 

The formulas and assumptions modeled into MS Excel are documented below in 

the order of the developmental process, i.e., generation of random variables from the 

user-defined parameters, calculation of the effects of collaboration and complexity to the 

total latencies, calculation of the confidence interval of the effective remaining time 

(MOP) and kill probability (MOE), and their histograms.  The entire stochastic 

simulation model is coded in the “SimGen” worksheet within the RAND EDA tool. 

1. Random Variables Generation 

The cells A1-L18 on the “SimGen” worksheet are used to generate the random 

variables. 

a. Beta (min, max, mode): The following algorithm/pseudo code is 

implemented to compute the alpha and beta parameters from the 

parameters that the user provides.  As mentioned in the previous section, 

the alphas and betas of the distribution are calculated and saved in the 

worksheet when the “Save” button is clicked. 
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The underlying principles for the above algorithm comes from the fact that 

the input variables that are fitted with a beta distribution are those with 

obvious minimum and maximum bounds, and a nominal value, similar to 

a triangular distribution.  Thus, the minimum, maximum and mode of the 

triangular distribution are transformed to derive the alpha and beta 

parameters of a beta distribution.  The means and variances (Reference 4) 

of a triangular distribution are matched up with that of a beta distribution 

to derive the parameters of the beta distribution.   
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modemaxmodeminmaxminmodemaxminvariance

3
modemaxminmean

222 ×−×−×−++=

++=

 

For the beta distribution: 

( ) ( )1
variance

mean

2 +++
=

+
=

βαβα
αβ

βα
α
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With the alpha and beta parameters, the Excel implementation for the beta 

random variable is: “=BETAINV(RAND(), alpha, beta, min, max)”, 

where RAND() is the Excel function to get a Uniform(0,1) random 

variable, and BETAINV is the inverse beta function. 

b. Gamma (min, mean): The following algorithm/pseudo code is 

implemented to compute the alpha and beta parameters from the user-

provided minimum and mean.  The assumption of the algorithm is, 

parameter alpha = beta.  This assumption is necessary, as 3 parameters are 

required to “pin down” a gamma distribution.  Another way to resolve this 

problem is to ask the user to provide the third parameter other than 

minimum and mean, either the variance or the mode of the distribution, 

which may not be easy for the user. 

   
alphabeta

meanalpha

mean  thenormalize:comments'  min       meanmean

=
=

−=

 

For the gamma distribution (Reference 4): 

2variance
mean

αβ
αβ
=

=
 

The Excel implementation is: “=GAMMAINV(RAND(), alpha, beta) + 

min”, where GAMMAINV is the inverse gamma function.  Due to Excel’s 

characteristics, when the mean provided by the user is very close to the 

min, the result from GAMMAINV(RAND(), alpha, beta) may sometimes 

be smaller than the smallest number presentable in Excel, and Excel will 

output “#NUM!” in the cell.  This causes error in the simulation output.   

Two additional cells B35-B36 are used to solve this problem.  B35 has the 

formula “=GAMMAINV(RAND(), alpha, beta) + min”, and B36 checks if 

the result from B35 is so small that “#NUM!” is the output.  The resultant 

gamma random variable generated in cell C8 is the result of an “if-else” 

statement based on B35-B36. 
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c. Exponential (mean): The Excel implementation is:  

“=-mean*LN(RAND())” 

where: 

LN is the natural logarithm. 

2. Collaboration 

Collaboration acts to reduce the expected time to complete the mission.  The 

effects of collaboration on each node are different, depending on the knowledge of those 

nodes that they are connected to.  The mathematical form (in the framework of metrics 

and measures recommended by RAND) of the contribution of collaboration to node i’s 

effective latency is expressed as the product in Equation (12), repeated below: 

( )( ) jin
j j tK

ω
=∏ −1 1  

where: 

( )tK j  is the knowledge function of node j, it represents the quality of the 

processes and equipment at node j, 1.0 represents high quality, and 0.0 implies low 

quality 

in  is the degree of node i 





=
        ForceTask  in the is  node if    0.1

ForceTask  in thenot  is  node if     5.0
j
j

jω  

Cells X26-BF52 calculate the collaboration contributions for each node, under 

each network centricity.  The intermediate results: 

a. Original Latencies (X35-AD38): These are the random numbers generated 

from the distributions.  These numbers change for each replication. 

b. Information Entropy (X39-AD42): All latencies, except the initial SSN 

report latency have an exponential distribution.  The mean latencies of the 

exponential distributions provide the λ parameter required to calculate the 
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knowledge function.  The computation of the knowledge function for the 

gamma distributed initial SSN report is different from the exponential 

distribution, and it is explained next. 

c. Knowledge Function (AE39-AK42) 

i. Exponential Distribution (mean 1/λ): The formula to calculate the 

knowledge function for the exponential distribution is stated in 

Equation (7), repeated below: 

( ) ( )










≥

<≤=
−

<

=

           if                                         1

 if 
ln 

/ln
ln

lnln
              if                                        0

min

minmin
minmin

min

λλ
λλλλλλλ

λλ

M

M
MM

tK  

where:  

 minλ  represents the minimum rate that corresponds to the 

maximum expected time, minλ 15 is chosen to be 0.5, implying that 

the maximum expected latency is 2.0 hours.  M is chosen to be 40, 

implying perfect knowledge if the expected latency is ≤ 1/20 hour. 

ii. Gamma Distribution (α and β): The information entropy of a 

gamma distribution (Reference 5) is: 

[ ] ( ) ( ) ααψααβ +−−Γ= 1)(ln)(dH  

where: 

( )αψ  is the first derivative of Euler’s gamma, 

( ) ( )ααψ =
α

Γ
d
d  

The following code (Reference 6) can compute an approximation 

to ( )αψ accurate to 10 decimal places: 

                                                 
15 Note that although information entropy is a universally accepted theory, the knowledge function is 

part of the framework of measures and metrics recommended by RAND, with the choices of minλ  and M 
based on educated guesses. 
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( )

( ) ( ) ( ) ( ) ( )
( ) ( ) ( )

( )
end;

;return
  

;6/15/14/1      
3/12/11/1/5.0ln  

;33338333333333.0333330083333333.0      
862540039682539.0666670041666666.0  

;/1  
;6  

psifunction 

2

34

2

p
-p;p

xxx
xxxxxpp

pp
ppp

xp
xx

x

=
−−−−−

−−−−−−−−+=
−

+−=
=

+=

 

An appropriate knowledge function (Reference 6) is: 

( ) ( ) ( )[ ]dHdHedK max1 −−= φ  

When , knowledge K(d) is zero.  Therefore, we associate 

minimum knowledge with maximum entropy as desired.  As  gets 

smaller, knowledge improves. 

( ) ( )dHdH max=

( )dH

d. Knowledge Functions (  (AE35-AK38):  Under different 

network centricity, the Task Force consists of different nodes, which 

means different w

( ) jw
j tK−1 )

)

j for the nodes. 

e. Product of Knowledge Functions for Different Network Centricity 

 (AL35-BF38): Under different network centricity, each 

node is connected to a different set of nodes, i.e., it collaborates with a 

different set of nodes.  

( )( jin

j j tK
ω

∏ =
−

1
1

f. Latencies for Different Network Centricity (BG35-CD38): The three sets 

of effective latencies are calculated from the product of the knowledge 

functions and the original latencies. 

g. Collaboration-Induced Latency (CE35-CE38): The total effective latency, 

considering the positive effects of collaboration, for the network centricity 

chosen. 
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3. Complexity 

The number of connections within the TCT network increases from Platform-

Centric (4) to Network-Centric (8) to Future Network-Centric (12)16.  The complexity 

factor to be introduced into the expected latency metric is: 

( )
C

C

e

eCg
β

β

45
147

45
147

1
+−

+−

+
=  

where:  

β is the user-provided complexity penalty, between zero and one 

C is the number of connections 

Figure 9 illustrates a typical complexity function for zero to 45 possible 

connections of the TCT network. 

The complexity/collaboration-induced latency is calculated (CF32-CK38) by: 

( )
1Complexity/Collaboration induced latency Collaboration induced latency

1 g C
= ×

−
 

4. Effective Time Remaining (MOP) 

The effective time remaining (MOP) is calculated (CM35-CM38) by subtracting 

the complexity/collaboration-induced latency from the submerge time of the KILO 

submarine. 

5. Kill Probability (MOE) 

The kill probability formula as stated in Equation (22) is: 

( ) [ ] ( )
T

wtTK
svk

k
ueTP

2

2

)(11 π−
−

−=  

The formula is implemented in cells A23-A33. 

                                                 
16 As with all other aspects of the framework of measures and metrics, the number of connections are 

based on educated guesses, validation on the number of connections remains a future task. 
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6. Replicating the Simulation 

With the user-provided parameters, a VBA Excel macro will automatically 

replicate the simulation, drawing different random numbers for each replication.  As a 

rough guide, the estimated run time for 1000 replications is 50 seconds on a Pentium III, 

667 Mhz Pc with 128 Mb RAM. 

7. Outputs 

The confidence intervals (user can define the confidence level) for the effective 

time remaining (MOP) and kill probability (MOE) are calculated in cells EF1-EH11, 

using conventional statistics formula.  The histograms for the MOP and MOE are also 

plotted. 
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APPENDIX B. LHS S+CODES 

The original version of the codes below has been provided by Thomas W. Lucas.  

Slight modifications to it have been made for this analysis. 

 
LHC� <-� function(theMatrix,� npoints)�
{�
� f� <-� function(m,n)�
� � {�
� � � � lb� <-� m[1]�
� � � � ub� <-� m[2]�
� � � � i� <-� (m[2]-m[1])/(n-1)�
� � � � return(seq(m[1],m[2],i))�
� � }�
� � hyper.design.temp� <-� apply(theMatrix,� 1,� f,� npoints)�
� � hyper.design� <-� apply(hyper.design.temp,� 2,� sample)�
� � return(hyper.design)�
}�
�
temp� <-�

matrix(c(0.2,0.1,0.2,rep(0.1,3),0.3,rep(0.025,2),0.05,200,0.1,1,2,1,2,1
,1,1,3,0.25,0.25,0.5,500,1,10),� ncol=2)�

temp�
npoints� <-� 91�
out.design� <-� LHC(temp,� npoints)�
out.design�
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APPENDIX C. LHS INPUT SETS 

Replication # Submerge Time 
(T) 

Complexity Penalty 
(b) 

Initial SSN Report CV SubGroup CVN 

1 0.6 0.2 0.62 0.14 0.71 0.66 
2 0.7 0.88 1.28 0.48 0.66 0.86 
3 0.94 0.65 0.22 0.36 0.52 0.49 
4 0.64 1 0.78 0.64 0.88 0.28 
5 0.52 0.14 0.98 0.84 0.22 0.89 
6 1.96 0.15 1.54 0.93 0.63 0.31 
7 1.52 0.39 1.88 0.74 0.72 0.47 
8 1.6 0.57 1.76 0.29 0.65 1 
9 0.38 0.54 1.16 0.68 0.34 0.48 
10 0.96 0.12 1.66 0.82 0.84 0.61 
11 0.66 0.23 0.56 1 0.87 0.8
12 1.46 0.3 1.36 0.8 0.67 0.83 
13 1.94 0.9 0.94 0.25 0.96 0.87 
14 1.18 0.84 0.6 0.12 1 0.23 
15 1.9 0.95 1.52 0.94 0.4 0.14 
16 1.8 0.74 1.84 0.59 0.83 0.24 
17 1.76 0.34 1.92 0.98 0.25 0.12 
18 2 0.81 1.02 0.9 0.56 0.92 
19 1.12 0.56 1.42 0.17 0.99 0.7
20 1.2 0.5 2 0.7 0.64 0.13 
21 1.44 0.85 0.26 0.42 0.15 0.56 
22 0.74 0.55 0.2 0.11 0.2 0.15 
23 0.82 0.59 0.84 0.51 0.42 0.46 
24 0.72 0.69 1.06 0.21 0.91 0.63 
25 0.9 0.17 1.32 0.6 0.98 0.35 
26 0.22 0.16 1.68 0.24 0.89 0.79 
27 1.32 0.42 1.72 0.46 0.85 0.55 
28 0.36 0.52 1.3 0.1 0.46 0.54 
29 1.06 0.6 1.04 0.41 0.39 0.1
30 1.34 0.43 1.78 0.81 0.32 0.21 
31 0.44 0.64 0.66 0.96 0.29 0.71 
32 1.84 0.94 1.1 0.71 0.48 0.17 
33 0.32 0.38 0.8 0.61 0.41 0.36 
34 0.84 0.89 0.44 0.85 0.37 0.29 
35 0.34 0.19 0.48 0.45 0.28 0.99 
36 1.42 0.78 0.24 0.35 0.82 0.73 
37 1 0.76 0.96 0.4 0.51 0.34 
38 1.02 0.75 1.12 0.32 0.23 0.9
39 1.16 0.71 0.88 0.16 0.93 0.33 
40 0.76 0.32 0.36 0.49 0.94 0.76 
41 0.28 0.7 0.28 0.22 0.5 0.72 
42 1.36 0.36 0.54 0.37 0.45 0.74 
43 1.68 0.41 1.94 0.95 0.97 0.95 
44 1.62 0.48 1.34 0.52 0.75 0.97 
45 1.1 0.24 0.72 0.89 0.43 0.6
46 0.98 0.11 0.58 0.44 0.47 0.44 
47 0.56 0.79 1.48 0.34 0.31 0.43 
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48 1.26 0.31 1.26 0.53 0.27 0.81 
49 0.54 0.8 0.46 0.99 0.58 0.67 
50 0.88 0.63 1.8 0.56 0.74 0.85 
51 1.28 0.91 0.74 0.13 0.19 0.64 
52 0.78 0.73 1.4 0.18 0.62 0.3
53 0.24 0.29 1.96 0.26 0.9 0.52 
54 1.3 0.53 1.98 0.77 0.12 0.96 
55 1.08 0.21 0.92 0.23 0.3 0.84 
56 0.8 0.4 1.24 0.87 0.38 0.38 
57 1.54 0.72 1.44 0.79 0.17 0.5
58 1.22 0.99 1.58 0.88 0.8 0.98 
59 1.56 0.22 1.9 0.75 0.16 0.65 
60 0.46 0.13 1.5 0.47 0.95 0.51 
61 1.5 0.82 0.9 0.86 0.35 0.26 
62 1.58 0.83 0.5 0.5 0.86 0.4
63 0.68 0.45 1.86 0.15 0.76 0.91 
64 1.98 0.68 1.7 0.63 0.44 0.58 
65 1.38 0.67 1.2 0.67 0.7 0.37 
66 0.4 0.98 1.64 0.73 0.36 0.77 
67 0.86 0.44 0.82 0.27 0.57 0.78 
68 1.72 0.49 0.64 0.55 0.68 0.62 
69 0.26 0.1 0.38 0.91 0.33 0.57 
70 1.78 0.58 1.6 0.97 0.21 0.45 
71 1.74 0.25 1 0.65 0.53 0.93 
72 1.24 0.46 1.46 0.33 0.78 0.94 
73 0.5 0.51 0.68 0.62 0.79 0.11 
74 0.42 0.33 1.62 0.72 0.54 0.2
75 0.92 0.77 1.18 0.19 0.69 0.88 
76 1.82 0.96 1.38 0.39 0.92 0.41 
77 1.86 0.86 0.42 0.66 0.24 0.27 
78 0.3 0.92 0.4 0.3 0.14 0.32 
79 0.58 0.62 0.3 0.54 0.6 0.16 
80 1.64 0.18 0.52 0.28 0.61 0.53 
81 1.92 0.27 0.86 0.31 0.13 0.69 
82 0.62 0.35 0.76 0.78 0.77 0.68 
83 1.04 0.28 1.82 0.38 0.18 0.39 
84 0.48 0.97 1.08 0.57 0.55 0.59 
85 1.4 0.37 0.7 0.69 0.81 0.18 
86 1.66 0.61 0.32 0.92 0.49 0.19 
87 1.7 0.26 1.74 0.83 0.73 0.75 
88 1.88 0.87 1.14 0.76 0.26 0.82 
89 1.48 0.47 0.34 0.2 0.59 0.22 
90 0.2 0.66 1.56 0.43 0.11 
91 1.14 0.93 1.22 0.58 0.1 0.42 

0.25 

Table 12. Latin Hypercube Sampling Input Sets Sample.  Note that not all input 
variables are shown in this sample.  Each variable is divided into 90 equal intervals 
(giving 91 endpoints). 
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APPENDIX D. C5.0 DESCRIPTION 

A C5.0 model works by splitting the sample based on the variable that provides 

the maximum expected reduction in information entropy.  Each subsample defined by the 

first split is then split again, usually based on a different variable, and the process repeats 

until the subsamples cannot be split any further.  Finally, the lowest level splits are re-

examined, and those that do not contribute significantly to the value of the model are 

removed or pruned. 

C5.0 can produce two kinds of models.  A decision tree is a straightforward 

description of the splits found by the algorithm.  Each terminal or "leaf" node describes a 

particular subset of the training data, and each case in the training data belongs to exactly 

one terminal node in the tree.  In other words, exactly one prediction is possible for any 

particular data record presented to a decision tree. 

In contrast, a ruleset is a set of rules that tries to make predictions for individual 

records.  Rulesets are derived from decision trees, and in a way represent a simplified or 

distilled version of the information found in the decision tree.  Rulesets can often retain 

most of the important information from a full decision tree, but with a less complex 

model.  Because of the way rulesets work, they do not have the same properties as 

decision trees.  The most important difference is that with a ruleset, more than one rule 

may apply for any particular record, or no rules at all may apply.  If multiple rules apply, 

each rule gets a weighted "vote" based on the confidence associated with that rule, and 

the final prediction is decided by combining the weighted votes of all the rules that apply 

to the record in question.  If no rule applies, a default prediction is assigned to the record. 

C5.0 models are quite robust in the presence of problems such as missing data and 

large numbers of variables.  They usually do not require long training times to estimate.  

In addition, C5.0 models tend to be easier to understand than some other model types, 

since the rules derived from the model have a very straightforward interpretation. 
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APPENDIX E. C5.0 RULESETS 

Rules for 1: 
    Rule #1 for 1:  
        if  Submerge Time (T) <= 0.92 

        and  Initial SSN Report > 1.3 

        and  Strike > 1.77 

        and  DDG > 0.142 

        and  CG > 0.067 

        then -> 1 (56, 0.845) 

    Rule #2 for 1: 
        if  Initial SSN Report > 1.18 

        and  Strike > 1.59 

        and  DDG > 0.21 

        and  Mean time between updates (tu) > 0.68 

        then -> 1 (31, 0.758) 

 

Rules for 2: 
    Rule #1 for 2: 
        if  Submerge Time (T) <= 1.2 

        and  Initial SSN Report > 0.84 

        and  Strike > 1.56 

        and  DDG > 0.045 

        and  DDG <= 0.09 

        and  Missile Speed (v) <= 313.333 

        then -> 2 (34, 0.944) 

    Rule #2 for 2: 
        if  Initial SSN Report > 1.26 

        and  Strike > 0.78 

        and  Strike <= 1.05 

        and  DDG > 0.125 

        and  Mean time between updates (tu) > 0.57 

        then -> 2 (21, 0.913) 

    Rule #3 for 2: 
        if  Submerge Time (T) > 0.94 

        and  Initial SSN Report > 0.44 
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        and  Strike > 2.52 

        and  DDG > 0.14 

        and  DDG <= 0.22 

        then -> 2 (59, 0.885) 

    Rule #4 for 2: 
        if  Submerge Time (T) <= 0.94 

        and  Initial SSN Report > 0.44 

        and  Initial SSN Report <= 0.84 

        and  Strike > 1.44 

        and  DDG > 0.08 

        then -> 2 (78, 0.863) 

    Rule #5 for 2: 
        if  Submerge Time (T) <= 0.68 

        and  Initial SSN Report > 0.84 

        and  Strike > 0.45 

        and  Strike <= 1.05 

        and  DDG > 0.125 

        then -> 2 (37, 0.846) 

    Rule #6 for 2: 
        if  Submerge Time (T) > 0.94 

        and  Initial SSN Report > 0.44 

        and  Strike > 1.44 

        and  DDG > 0.22 

        then -> 2 (79, 0.84) 

    Rule #7 for 2:  
        if  Submerge Time (T) > 0.68 

        and  Initial SSN Report > 1.56 

        and  Strike > 0.63 

        and  DDG > 0.125 

        and  Mean time between updates (tu) <= 0.57 

        then -> 2 (76, 0.833) 

    Rule #8 for 2: 
        if  Initial SSN Report > 1.26 

        and  Strike <= 1.05 

        and  DDG > 0.18 

        and  Missile Speed (v) <= 346.667 

        and  Mean time between updates (tu) > 0.57 
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        then -> 2 (20, 0.773) 

    Rule #9 for 2: 
        if  Initial SSN Report > 0.84 

        then -> 2 (1272, 0.547) 

 

Rules for 3: 
    Rule #1 for 3: 
        if  Submerge Time (T) > 1.2 

        and  Initial SSN Report <= 1.4 

        and  DDG <= 0.09 

        then -> 3 (166, 0.982) 

    Rule #2 for 3: 
        if  Strike <= 1.56 

        and  DDG <= 0.09 

        and  Mean time between updates (tu) <= 0.6 

        then -> 3 (158, 0.981) 

    Rule #3 for 3: 
        if  DDG <= 0.045 

        then -> 3 (197, 0.98) 

    Rule #4 for 3: 
        if  Submerge Time (T) > 1.2 

        and  Strike <= 1.95 

        and  DDG <= 0.09 

        then -> 3 (161, 0.975) 

    Rule #5 for 3: 
        if  Initial SSN Report <= 1.36 

        and  DDG <= 0.09 

        and  Mean time between updates (tu) <= 0.6 

        then -> 3 (213, 0.953) 

    Rule #6 for 3: 
        if  Submerge Time (T) > 1.52 

        and  Strike <= 1.59 

        and  DDG <= 0.158 

        then -> 3 (142, 0.938) 

    Rule #7 for 3: 
        if  Submerge Time (T) > 0.92 

        and  Initial SSN Report <= 1.18 
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        and  Mean time between updates (tu) <= 0.24 

        then -> 3 (114, 0.922) 

    Rule #8 for 3: 
        if  Strike <= 1.05 

        then -> 3 (572, 0.838) 

    Rule #9 for 3:  
        if  Initial SSN Report <= 0.84 

        then -> 3 (730, 0.821) 
 
Default : -> 3 
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